Abstract
1. Acetylcholine (ACh)-induced rebound stimulation of the cAMP-regulated Cl- current was studied in isolated guinea-pig ventricular myocytes using dialysing and dialysis-limiting configurations of the whole-cell patch-clamp technique. 2. Exposure to and subsequent washout of ACh produced a transient rebound stimulation of the Cl- current. However, this rebound response was only observed in the presence of submaximally stimulating concentrations of the cAMP-producing agonists isoprenaline (Iso) or histamine. ACh-induced rebound stimulation was not observed in the presence of maximally stimulating concentrations of Iso, nor was it observed in the absence of Iso. 3. To prevent saturation of responses during rebound, the effects of ACh were studied in the presence of a subthreshold concentration of Iso (0.001 microM). Varying the duration of exposure to ACh before washout demonstrated that the stimulatory effect of 1 microM ACh approaches steady state with a time constant of 34 s. Exposing myocytes to varying concentrations of ACh for 90 s demonstrated that the EC50 for the stimulatory effect of ACh was 0.15 microM with a maximum response equal to 67% of that obtained by a maximally stimulating concentration of Iso alone. 4. Rebound stimulation of the Cl- current could also be elicited by washing in 2 microM atropine during exposure to ACh, instead of washing out ACh. Furthermore, ACh-induced rebound was blocked by the M2 muscarinic receptor antagonist methoctramine but not by the M1 receptor antagonist pirenzepine. Rebound was also blocked in pertussis toxin (PTX)-treated myocytes. 5. ACh-induced rebound stimulation was not blocked by: (a) L-NMMA, an inhibitor of nitric oxide synthase activity; (b) Methylene Blue, LY-83583, and ODQ, inhibitors of cGMP production; or (c) milrinone, an inhibitor of cGMP-dependent phosphodiesterase activity. 6. These results indicate that ACh can stimulate cAMP-regulated ion channel activity in cardiac ventricular myocytes by facilitating beta-adrenergic and histaminergic responses. This is opposite to the inhibitory actions more typically associated with muscarinic receptor stimulation in ventricular myocardium. This stimulatory effect of ACh is mediated through M2 muscarinic receptors and a PTX-sensitive G-protein, but it does not appear to involve the production of nitric oxide or cGMP.
Full text
PDF















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bahinski A., Nairn A. C., Greengard P., Gadsby D. C. Chloride conductance regulated by cyclic AMP-dependent protein kinase in cardiac myocytes. Nature. 1989 Aug 31;340(6236):718–721. doi: 10.1038/340718a0. [DOI] [PubMed] [Google Scholar]
- Balligand J. L., Kelly R. A., Marsden P. A., Smith T. W., Michel T. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):347–351. doi: 10.1073/pnas.90.1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balligand J. L., Kobzik L., Han X., Kaye D. M., Belhassen L., O'Hara D. S., Kelly R. A., Smith T. W., Michel T. Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem. 1995 Jun 16;270(24):14582–14586. doi: 10.1074/jbc.270.24.14582. [DOI] [PubMed] [Google Scholar]
- Brunner F., Schmidt K., Nielsen E. B., Mayer B. Novel guanylyl cyclase inhibitor potently inhibits cyclic GMP accumulation in endothelial cells and relaxation of bovine pulmonary artery. J Pharmacol Exp Ther. 1996 Apr;277(1):48–53. [PubMed] [Google Scholar]
- Burke G. H., Calaresu F. R. An experimental analysis of the tachycardia that follows vagal stimulation. J Physiol. 1972 Oct;226(2):491–510. doi: 10.1113/jphysiol.1972.sp009995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diamond J. Effects of LY83583, nordihydroguaiaretic acid, and quinacrine on cyclic GMP elevation and inhibition of tension by muscarinic agonists in rabbit aorta and left atrium. Can J Physiol Pharmacol. 1987 Sep;65(9):1913–1917. doi: 10.1139/y87-297. [DOI] [PubMed] [Google Scholar]
- Dörje F., Wess J., Lambrecht G., Tacke R., Mutschler E., Brann M. R. Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J Pharmacol Exp Ther. 1991 Feb;256(2):727–733. [PubMed] [Google Scholar]
- Ehara T., Mitsuiye T. Adrenergic-cholinergic interactions on membrane potential of K+ -depolarized ventricular muscle. Am J Physiol. 1984 Aug;247(2 Pt 2):H244–H250. doi: 10.1152/ajpheart.1984.247.2.H244. [DOI] [PubMed] [Google Scholar]
- Fischmeister R., Hartzell H. C. Cyclic AMP phosphodiesterases and Ca2+ current regulation in cardiac cells. Life Sci. 1991;48(25):2365–2376. doi: 10.1016/0024-3205(91)90369-m. [DOI] [PubMed] [Google Scholar]
- Gallo M. P., Alloatti G., Eva C., Oberto A., Levi R. C. M1 muscarinic receptors increase calcium current and phosphoinositide turnover in guinea-pig ventricular cardiocytes. J Physiol. 1993 Nov;471:41–60. doi: 10.1113/jphysiol.1993.sp019890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garthwaite J., Southam E., Boulton C. L., Nielsen E. B., Schmidt K., Mayer B. Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol Pharmacol. 1995 Aug;48(2):184–188. [PubMed] [Google Scholar]
- Gilmour R. F., Jr, Zipes D. P. Positive inotropic effect of acetylcholine in canine cardiac Purkinje fibers. Am J Physiol. 1985 Oct;249(4 Pt 2):H735–H740. doi: 10.1152/ajpheart.1985.249.4.H735. [DOI] [PubMed] [Google Scholar]
- HOLLENBERG M., CARRIERE S., BARGER A. C. BIPHASIC ACTION OF ACETYLCHOLINE ON VENTRICULAR MYOCARDIUM. Circ Res. 1965 Jun;16:527–536. doi: 10.1161/01.res.16.6.527. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Han X., Shimoni Y., Giles W. R. A cellular mechanism for nitric oxide-mediated cholinergic control of mammalian heart rate. J Gen Physiol. 1995 Jul;106(1):45–65. doi: 10.1085/jgp.106.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartzell H. C. Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Prog Biophys Mol Biol. 1988;52(3):165–247. doi: 10.1016/0079-6107(88)90014-4. [DOI] [PubMed] [Google Scholar]
- Harvey R. D., Clark C. D., Hume J. R. Chloride current in mammalian cardiac myocytes. Novel mechanism for autonomic regulation of action potential duration and resting membrane potential. J Gen Physiol. 1990 Jun;95(6):1077–1102. doi: 10.1085/jgp.95.6.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harvey R. D., Hume J. R. Autonomic regulation of a chloride current in heart. Science. 1989 May 26;244(4907):983–985. doi: 10.1126/science.2543073. [DOI] [PubMed] [Google Scholar]
- Hescheler J., Tang M., Jastorff B., Trautwein W. On the mechanism of histamine induced enhancement of the cardiac Ca2+ current. Pflugers Arch. 1987 Sep;410(1-2):23–29. doi: 10.1007/BF00581891. [DOI] [PubMed] [Google Scholar]
- Horn R., Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol. 1988 Aug;92(2):145–159. doi: 10.1085/jgp.92.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hwang T. C., Horie M., Gadsby D. C. Functionally distinct phospho-forms underlie incremental activation of protein kinase-regulated Cl- conductance in mammalian heart. J Gen Physiol. 1993 May;101(5):629–650. doi: 10.1085/jgp.101.5.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy M. N. Sympathetic-parasympathetic interactions in the heart. Circ Res. 1971 Nov;29(5):437–445. doi: 10.1161/01.res.29.5.437. [DOI] [PubMed] [Google Scholar]
- Linden J. Enhanced cAMP accumulation after termination of cholinergic action in the heart. FASEB J. 1987 Aug;1(2):119–124. doi: 10.1096/fasebj.1.2.2440752. [DOI] [PubMed] [Google Scholar]
- Loeb J. M., Vassalle M. Adrenergic mechanisms in postvagal tachycardia. J Pharmacol Exp Ther. 1979 Jul;210(1):56–63. [PubMed] [Google Scholar]
- Löffelholz K., Pappano A. J. The parasympathetic neuroeffector junction of the heart. Pharmacol Rev. 1985 Mar;37(1):1–24. [PubMed] [Google Scholar]
- Martynyuk A. E., Kane K. A., Cobbe S. M., Rankin A. C. Nitric oxide mediates the anti-adrenergic effect of adenosine on calcium current in isolated rabbit atrioventricular nodal cells. Pflugers Arch. 1996 Jan;431(3):452–457. doi: 10.1007/BF02207285. [DOI] [PubMed] [Google Scholar]
- Mubagwa K., Shirayama T., Moreau M., Pappano A. J. Effects of PDE inhibitors and carbachol on the L-type Ca current in guinea pig ventricular myocytes. Am J Physiol. 1993 Oct;265(4 Pt 2):H1353–H1363. doi: 10.1152/ajpheart.1993.265.4.H1353. [DOI] [PubMed] [Google Scholar]
- Méry P. F., Pavoine C., Belhassen L., Pecker F., Fischmeister R. Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. J Biol Chem. 1993 Dec 15;268(35):26286–26295. [PubMed] [Google Scholar]
- Ono K., Noma A. Autonomic regulation of cardiac chloride current. Jpn J Physiol. 1994;44 (Suppl 2):S193–S198. [PubMed] [Google Scholar]
- Ono K., Tareen F. M., Yoshida A., Noma A. Synergistic action of cyclic GMP on catecholamine-induced chloride current in guinea-pig ventricular cells. J Physiol. 1992;453:647–661. doi: 10.1113/jphysiol.1992.sp019249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ono K., Trautwein W. Potentiation by cyclic GMP of beta-adrenergic effect on Ca2+ current in guinea-pig ventricular cells. J Physiol. 1991 Nov;443:387–404. doi: 10.1113/jphysiol.1991.sp018839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Overholt J. L., Hobert M. E., Harvey R. D. On the mechanism of rectification of the isoproterenol-activated chloride current in guinea-pig ventricular myocytes. J Gen Physiol. 1993 Nov;102(5):871–895. doi: 10.1085/jgp.102.5.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rae J., Cooper K., Gates P., Watsky M. Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods. 1991 Mar;37(1):15–26. doi: 10.1016/0165-0270(91)90017-t. [DOI] [PubMed] [Google Scholar]
- Schmidt M. J., Sawyer B. D., Truex L. L., Marshall W. S., Fleisch J. H. LY83583: an agent that lowers intracellular levels of cyclic guanosine 3',5'-monophosphate. J Pharmacol Exp Ther. 1985 Mar;232(3):764–769. [PubMed] [Google Scholar]
- Tareen F. M., Ono K., Noma A., Ehara T. Beta-adrenergic and muscarinic regulation of the chloride current in guinea-pig ventricular cells. J Physiol. 1991;440:225–241. doi: 10.1113/jphysiol.1991.sp018705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y. G., Lipsius S. L. Acetylcholine elicits a rebound stimulation of Ca2+ current mediated by pertussis toxin-sensitive G protein and cAMP-dependent protein kinase A in atrial myocytes. Circ Res. 1995 Apr;76(4):634–644. doi: 10.1161/01.res.76.4.634. [DOI] [PubMed] [Google Scholar]
- Zakharov S. I., Harvey R. D. Altered beta-adrenergic and muscarinic response of CFTR Cl- current in dialyzed cardiac myocytes. Am J Physiol. 1995 May;268(5 Pt 2):H1795–H1802. doi: 10.1152/ajpheart.1995.268.5.H1795. [DOI] [PubMed] [Google Scholar]
- Zakharov S. I., Pieramici S., Kumar G. K., Prabhakar N. R., Harvey R. D. Nitric oxide synthase activity in guinea pig ventricular myocytes is not involved in muscarinic inhibition of cAMP-regulated ion channels. Circ Res. 1996 May;78(5):925–935. doi: 10.1161/01.res.78.5.925. [DOI] [PubMed] [Google Scholar]
- Zakharov S. I., Wagner R. A., Harvey R. D. Muscarinic regulation of the cardiac CFTR Cl- current by quaternary ammonium compounds. J Pharmacol Exp Ther. 1995 Apr;273(1):470–481. [PubMed] [Google Scholar]