Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Apr 1;500(Pt 1):65–73. doi: 10.1113/jphysiol.1997.sp021999

Thyroid hormone regulates postnatal expression of transient K+ channel isoforms in rat ventricle.

Y Shimoni 1, C Fiset 1, R B Clark 1, J E Dixon 1, D McKinnon 1, W R Giles 1
PMCID: PMC1159359  PMID: 9097933

Abstract

1. The ability of thyroid hormone to regulate the postnatal changes of the Ca2+-independent transient outward K+ current (It) was studied in rat ventricular myocytes. 2. In rat ventricle, It is very small at birth and then increases markedly between postnatal days 8 and 20. The time course of this increase in current density is similar to that of a significant rise in plasma thyroid hormone (T3) levels. 3. During early development, the density of expression of It can be altered by changes in thyroid hormone levels. Eight days after birth the density of It measured at +50 mV in control animals is 2.2 +/- 0.4 pA pF(-1). This value is about 3-fold larger (6.5 +/- 0.8 pA pF(-1)) in myocytes from age-matched hyperthyroid animals. When the plasma T3 level in newborn rats is not allowed to increase, or is decreased by making animals hypothyroid, this age-dependent increase in It fails to occur. 4. Using RNase protection assays, Kv4.2 and Kv4.3 mRNA levels were measured in ventricular tissues obtained from age-matched 8-day-old control and hyperthyroid rats. In hyperthyroid animals, where an approximately 3-fold increase in It was identified, increases in the mRNA levels for Kv4.2 and Kv4.3 were 1.6-fold and 2.6-fold, respectively. 5. These results show that thyroid hormone can regulate the development of It in rat ventricle. Direct measurements of It density and mRNA levels as a function of development and thyroid hormone levels also strongly suggest that the Kv4.2 and Kv4.3 channels are essential components of It in rat ventricular cells.

Full text

PDF
65

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry D. M., Nerbonne J. M. Myocardial potassium channels: electrophysiological and molecular diversity. Annu Rev Physiol. 1996;58:363–394. doi: 10.1146/annurev.ph.58.030196.002051. [DOI] [PubMed] [Google Scholar]
  2. Barry D. M., Trimmer J. S., Merlie J. P., Nerbonne J. M. Differential expression of voltage-gated K+ channel subunits in adult rat heart. Relation to functional K+ channels? Circ Res. 1995 Aug;77(2):361–369. doi: 10.1161/01.res.77.2.361. [DOI] [PubMed] [Google Scholar]
  3. Blair T. A., Roberds S. L., Tamkun M. M., Hartshorne R. P. Functional characterization of RK5, a voltage-gated K+ channel cloned from the rat cardiovascular system. FEBS Lett. 1991 Dec 16;295(1-3):211–213. doi: 10.1016/0014-5793(91)81420-d. [DOI] [PubMed] [Google Scholar]
  4. Brent G. A., Moore D. D., Larsen P. R. Thyroid hormone regulation of gene expression. Annu Rev Physiol. 1991;53:17–35. doi: 10.1146/annurev.ph.53.030191.000313. [DOI] [PubMed] [Google Scholar]
  5. Chizzonite R. A., Zak R. Regulation of myosin isoenzyme composition in fetal and neonatal rat ventricle by endogenous thyroid hormones. J Biol Chem. 1984 Oct 25;259(20):12628–12632. [PubMed] [Google Scholar]
  6. Crumb W. J., Jr, Pigott J. D., Clarkson C. W. Comparison of Ito in young and adult human atrial myocytes: evidence for developmental changes. Am J Physiol. 1995 Mar;268(3 Pt 2):H1335–H1342. doi: 10.1152/ajpheart.1995.268.3.H1335. [DOI] [PubMed] [Google Scholar]
  7. Deal K. K., England S. K., Tamkun M. M. Molecular physiology of cardiac potassium channels. Physiol Rev. 1996 Jan;76(1):49–67. doi: 10.1152/physrev.1996.76.1.49. [DOI] [PubMed] [Google Scholar]
  8. Dixon J. E., McKinnon D. Quantitative analysis of potassium channel mRNA expression in atrial and ventricular muscle of rats. Circ Res. 1994 Aug;75(2):252–260. doi: 10.1161/01.res.75.2.252. [DOI] [PubMed] [Google Scholar]
  9. Dixon J. E., Shi W., Wang H. S., McDonald C., Yu H., Wymore R. S., Cohen I. S., McKinnon D. Role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current. Circ Res. 1996 Oct;79(4):659–668. doi: 10.1161/01.res.79.4.659. [DOI] [PubMed] [Google Scholar]
  10. Ewart H. S., Klip A. Hormonal regulation of the Na(+)-K(+)-ATPase: mechanisms underlying rapid and sustained changes in pump activity. Am J Physiol. 1995 Aug;269(2 Pt 1):C295–C311. doi: 10.1152/ajpcell.1995.269.2.C295. [DOI] [PubMed] [Google Scholar]
  11. Felzen B., Rubinstein I., Lotan R., Binah O. Developmental changes in ventricular action potential properties in guinea-pigs are modulated by age-related changes in the thyroid state. J Mol Cell Cardiol. 1991 Jul;23(7):787–794. doi: 10.1016/0022-2828(91)90212-5. [DOI] [PubMed] [Google Scholar]
  12. Fiset C., Clark R. B., Shimoni Y., Giles W. R. Shal-type channels contribute to the Ca2+-independent transient outward K+ current in rat ventricle. J Physiol. 1997 Apr 1;500(Pt 1):51–64. doi: 10.1113/jphysiol.1997.sp021998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fisher D. A., Dussault J. H., Sack J., Chopra I. J. Ontogenesis of hypothalamic--pituitary--thyroid function and metabolism in man, sheep, and rat. Recent Prog Horm Res. 1976;33:59–116. doi: 10.1016/b978-0-12-571133-3.50010-6. [DOI] [PubMed] [Google Scholar]
  14. Franklyn J. A., Gammage M. D. Thyroid disease: effects on cardiovascular function. Trends Endocrinol Metab. 1996 Mar;7(2):50–54. doi: 10.1016/1043-2760(95)00227-8. [DOI] [PubMed] [Google Scholar]
  15. Izumo S., Nadal-Ginard B., Mahdavi V. All members of the MHC multigene family respond to thyroid hormone in a highly tissue-specific manner. Science. 1986 Feb 7;231(4738):597–600. doi: 10.1126/science.3945800. [DOI] [PubMed] [Google Scholar]
  16. Jeck C. D., Boyden P. A. Age-related appearance of outward currents may contribute to developmental differences in ventricular repolarization. Circ Res. 1992 Dec;71(6):1390–1403. doi: 10.1161/01.res.71.6.1390. [DOI] [PubMed] [Google Scholar]
  17. Kansara M. S., Mehra A. K., Von Hagen J., Kabotyansky E., Smith P. J. Physiological concentrations of insulin and T3 stimulate 3T3-L1 adipocyte acyl-CoA synthetase gene transcription. Am J Physiol. 1996 May;270(5 Pt 1):E873–E881. doi: 10.1152/ajpendo.1996.270.5.E873. [DOI] [PubMed] [Google Scholar]
  18. Kilborn M. J., Fedida D. A study of the developmental changes in outward currents of rat ventricular myocytes. J Physiol. 1990 Nov;430:37–60. doi: 10.1113/jphysiol.1990.sp018280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kolár F., Seppet E. K., Vetter R., Procházka J., Grünermel J., Zilmer K., Ostádal B. Thyroid control of contractile function and calcium handling in neonatal rat heart. Pflugers Arch. 1992 May;421(1):26–31. doi: 10.1007/BF00374729. [DOI] [PubMed] [Google Scholar]
  20. Lau C., Slotkin T. A. Maturation of sympathetic neurotransmission in the rat heart. VIII. Slowed development of noradrenergic synapses resulting from hypothyroidism. J Pharmacol Exp Ther. 1982 Mar;220(3):629–636. [PubMed] [Google Scholar]
  21. Magyar C. E., Wang J., Azuma K. K., McDonough A. A. Reciprocal regulation of cardiac Na-K-ATPase and Na/Ca exchanger: hypertension, thyroid hormone, development. Am J Physiol. 1995 Sep;269(3 Pt 1):C675–C682. doi: 10.1152/ajpcell.1995.269.3.C675. [DOI] [PubMed] [Google Scholar]
  22. Metz L. D., Seidler F. J., McCook E. C., Slotkin T. A. Cardiac alpha-adrenergic receptor expression is regulated by thyroid hormone during a critical developmental period. J Mol Cell Cardiol. 1996 May;28(5):1033–1044. doi: 10.1006/jmcc.1996.0096. [DOI] [PubMed] [Google Scholar]
  23. Morkin E., Flink I. L., Goldman S. Biochemical and physiologic effects of thyroid hormone on cardiac performance. Prog Cardiovasc Dis. 1983 Mar-Apr;25(5):435–464. doi: 10.1016/0033-0620(83)90004-x. [DOI] [PubMed] [Google Scholar]
  24. Oppenheimer J. H., Silva E., Schwartz H. L., Surks M. I. Stimulation of hepatic mitochondrial alpha-glycerophosphate dehydrogenase and malic enzyme by L-triiodothyronine. Characteristics of the response with specific nuclear thyroid hormone binding sites fully saturated. J Clin Invest. 1977 Mar;59(3):517–527. doi: 10.1172/JCI108667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Orlowski J., Lingrel J. B. Thyroid and glucocorticoid hormones regulate the expression of multiple Na,K-ATPase genes in cultured neonatal rat cardiac myocytes. J Biol Chem. 1990 Feb 25;265(6):3462–3470. [PubMed] [Google Scholar]
  26. Roberds S. L., Tamkun M. M. Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in rat heart. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1798–1802. doi: 10.1073/pnas.88.5.1798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schmitt C. A., McDonough A. A. Thyroid hormone regulates alpha and alpha + isoforms of Na,K-ATPase during development in neonatal rat brain. J Biol Chem. 1988 Nov 25;263(33):17643–17649. [PubMed] [Google Scholar]
  28. Serôdio P., Vega-Saenz de Miera E., Rudy B. Cloning of a novel component of A-type K+ channels operating at subthreshold potentials with unique expression in heart and brain. J Neurophysiol. 1996 May;75(5):2174–2179. doi: 10.1152/jn.1996.75.5.2174. [DOI] [PubMed] [Google Scholar]
  29. Shimoni Y., Banno H., Clark R. B. Hyperthyroidism selectively modified a transient potassium current in rabbit ventricular and atrial myocytes. J Physiol. 1992 Nov;457:369–389. doi: 10.1113/jphysiol.1992.sp019383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shimoni Y., Severson D., Giles W. Thyroid status and diabetes modulate regional differences in potassium currents in rat ventricle. J Physiol. 1995 Nov 1;488(Pt 3):673–688. doi: 10.1113/jphysiol.1995.sp020999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Takimoto K., Levitan E. S. Glucocorticoid induction of Kv1.5 K+ channel gene expression in ventricle of rat heart. Circ Res. 1994 Dec;75(6):1006–1013. doi: 10.1161/01.res.75.6.1006. [DOI] [PubMed] [Google Scholar]
  32. Vigouroux E. Dynamic study of post-natal thyroid function in the rat. Acta Endocrinol (Copenh) 1976 Dec;83(4):752–762. doi: 10.1530/acta.0.0830752. [DOI] [PubMed] [Google Scholar]
  33. Wibo M., Kilar F., Zheng L., Godfraind T. Influence of thyroid status on postnatal maturation of calcium channels, beta-adrenoceptors and cation transport ATPases in rat ventricular tissue. J Mol Cell Cardiol. 1995 Aug;27(8):1731–1743. doi: 10.1016/s0022-2828(95)90887-0. [DOI] [PubMed] [Google Scholar]
  34. Xu H., Dixon J. E., Barry D. M., Trimmer J. S., Merlie J. P., McKinnon D., Nerbonne J. M. Developmental analysis reveals mismatches in the expression of K+ channel alpha subunits and voltage-gated K+ channel currents in rat ventricular myocytes. J Gen Physiol. 1996 Nov;108(5):405–419. doi: 10.1085/jgp.108.5.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zahler R., Sun W., Ardito T., Kashgarian M. Na-K-ATPase alpha-isoform expression in heart and vascular endothelia: cellular and developmental regulation. Am J Physiol. 1996 Jan;270(1 Pt 1):C361–C371. doi: 10.1152/ajpcell.1996.270.1.C361. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES