Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Apr 1;500(Pt 1):155–164. doi: 10.1113/jphysiol.1997.sp022006

The role of active transport in potassium reabsorption in the proximal convoluted tubule of the anaesthetized rat.

R W Wilson 1, M Wareing 1, R Green 1
PMCID: PMC1159366  PMID: 9097940

Abstract

1. We have previously assessed the contributions of diffusion and convection to net potassium reabsorption in the rat proximal convoluted tubule (PCT). The present study was conducted to evaluate the role of active transport in convective potassium reabsorption by measuring the transepithelial potassium reflection coefficient (sigmaK) in the presence and absence of cyanide in anaesthetized rats previously prepared for in vivo microperfusion. 2. Osmotic water permeability (Pf) was measured in double-perfused tubules (lumen and peritubular capillaries) by manipulating the applied transepithelial osmotic gradient between -30 and +40 mosmol (kg H2O)(-1) using raffinose added to or subtracted from luminal perfusates. Pf was unaffected by the presence of cyanide when the estimated dissipation of osmotic gradients along each tubule were taken into account. 3. The proportion of K+ (and Na+) convectively transported with water fluxes (i.e. sigmaK) was not affected by cyanide. In the absence of active transport and following correction for any diffusive component, sigmaK was 0.56 +/- 0.13, indicating substantial solvent drag which probably occurs via the paracellular pathway. 4. However, cyanide caused a reduction in net potassium flux over the entire range of fluid fluxes used in double-perfusion experiments. Subsequent single-perfusion experiments (tubule lumen only) using the specific K+-H+-ATPase inhibitor, SCH28080, failed to reveal any direct evidence for a primary active K+ transporting mechanism involved in K+ reabsorption in the PCT.

Full text

PDF
155

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agre P., Preston G. M., Smith B. L., Jung J. S., Raina S., Moon C., Guggino W. B., Nielsen S. Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol. 1993 Oct;265(4 Pt 2):F463–F476. doi: 10.1152/ajprenal.1993.265.4.F463. [DOI] [PubMed] [Google Scholar]
  2. Beck J. S., Laprade R., Lapointe J. Y. Coupling between transepithelial Na transport and basolateral K conductance in renal proximal tubule. Am J Physiol. 1994 Apr;266(4 Pt 2):F517–F527. doi: 10.1152/ajprenal.1994.266.4.F517. [DOI] [PubMed] [Google Scholar]
  3. Beck L. H., Senesky D., Goldberg M. Sodium-independent active potassium reabsorption in proximal tubule of the dog. J Clin Invest. 1973 Oct;52(10):2641–2645. doi: 10.1172/JCI107456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bishop J. H., Green R., Thomas S. Effects of glucose on water and sodium reabsorption in the proximal convoluted tubule of rat kidney. J Physiol. 1978 Feb;275:481–493. doi: 10.1113/jphysiol.1978.sp012202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bomsztyk K., Wright F. S. Dependence of ion fluxes on fluid transport by rat proximal tubule. Am J Physiol. 1986 Apr;250(4 Pt 2):F680–F689. doi: 10.1152/ajprenal.1986.250.4.F680. [DOI] [PubMed] [Google Scholar]
  6. Capasso G., Malnic G., Wang T., Giebisch G. Acidification in mammalian cortical distal tubule. Kidney Int. 1994 Jun;45(6):1543–1554. doi: 10.1038/ki.1994.204. [DOI] [PubMed] [Google Scholar]
  7. Doucet A., Marsy S. Characterization of K-ATPase activity in distal nephron: stimulation by potassium depletion. Am J Physiol. 1987 Sep;253(3 Pt 2):F418–F423. doi: 10.1152/ajprenal.1987.253.3.F418. [DOI] [PubMed] [Google Scholar]
  8. Edelman A., Curci S., Samarzija I., Frömter E. Determination of intracellular K+ activity in rat kidney proximal tubular cells. Pflugers Arch. 1978 Dec 15;378(1):37–45. doi: 10.1007/BF00581956. [DOI] [PubMed] [Google Scholar]
  9. Fernandez R., Lopes M. J., de Lira R. F., Dantas W. F., Cragoe Júnior E. J., Malnic G. Mechanism of acidification along cortical distal tubule of the rat. Am J Physiol. 1994 Feb;266(2 Pt 2):F218–F226. doi: 10.1152/ajprenal.1994.266.2.F218. [DOI] [PubMed] [Google Scholar]
  10. Frömter E., Rumrich G., Ullrich K. J. Phenomenologic description of Na+, Cl- and HCO-3 absorption from proximal tubules of rat kidney. Pflugers Arch. 1973 Oct 22;343(3):189–220. doi: 10.1007/BF00586045. [DOI] [PubMed] [Google Scholar]
  11. Garg L. C. Respective roles of H-ATPase and H-K-ATPase in ion transport in the kidney. J Am Soc Nephrol. 1991 Nov;2(5):949–960. doi: 10.1681/ASN.V25949. [DOI] [PubMed] [Google Scholar]
  12. Green R., Giebisch G. Luminal hypotonicity: a driving force for fluid absorption from the proximal tubule. Am J Physiol. 1984 Feb;246(2 Pt 2):F167–F174. doi: 10.1152/ajprenal.1984.246.2.F167. [DOI] [PubMed] [Google Scholar]
  13. Green R., Giebisch G. Reflection coefficients and water permeability in rat proximal tubule. Am J Physiol. 1989 Oct;257(4 Pt 2):F658–F668. doi: 10.1152/ajprenal.1989.257.4.F658. [DOI] [PubMed] [Google Scholar]
  14. Green R., Giebisch G., Unwin R., Weinstein A. M. Coupled water transport by rat proximal tubule. Am J Physiol. 1991 Dec;261(6 Pt 2):F1046–F1054. doi: 10.1152/ajprenal.1991.261.6.F1046. [DOI] [PubMed] [Google Scholar]
  15. Green R., Windhager E. E., Giebisch G. Protein oncotic pressure effects on proximal tubular fluid movement in the rat. Am J Physiol. 1974 Feb;226(2):265–276. doi: 10.1152/ajplegacy.1974.226.2.265. [DOI] [PubMed] [Google Scholar]
  16. KEDEM O., KATCHALSKY A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 1958 Feb;27(2):229–246. doi: 10.1016/0006-3002(58)90330-5. [DOI] [PubMed] [Google Scholar]
  17. Kaufman J. S., Hamburger R. J. Passive potassium transport in the proximal convoluted tubule. Am J Physiol. 1985 Feb;248(2 Pt 2):F228–F232. doi: 10.1152/ajprenal.1985.248.2.F228. [DOI] [PubMed] [Google Scholar]
  18. Kibble J. D., Wareing M., Wilson R. W., Green R. Effect of barium on potassium diffusion across the proximal convoluted tubule of the anesthetized rat. Am J Physiol. 1995 Apr;268(4 Pt 2):F778–F783. doi: 10.1152/ajprenal.1995.268.4.F778. [DOI] [PubMed] [Google Scholar]
  19. Maunsbach A. B., Giebisch G. H., Stanton B. A. Effects of flow rate on proximal tubule ultrastructure. Am J Physiol. 1987 Sep;253(3 Pt 2):F582–F587. doi: 10.1152/ajprenal.1987.253.3.F582. [DOI] [PubMed] [Google Scholar]
  20. Okusa M. D., Unwin R. J., Velázquez H., Giebisch G., Wright F. S. Active potassium absorption by the renal distal tubule. Am J Physiol. 1992 Mar;262(3 Pt 2):F488–F493. doi: 10.1152/ajprenal.1992.262.3.F488. [DOI] [PubMed] [Google Scholar]
  21. Rehwald W., Lang F. The effect of cyanide on apparent potassium conductance across the peritubular cell membrane of frog proximal tubules. Pflugers Arch. 1986 Dec;407(6):607–610. doi: 10.1007/BF00582639. [DOI] [PubMed] [Google Scholar]
  22. Silver R. B., Frindt G. Functional identification of H-K-ATPase in intercalated cells of cortical collecting tubule. Am J Physiol. 1993 Feb;264(2 Pt 2):F259–F266. doi: 10.1152/ajprenal.1993.264.2.F259. [DOI] [PubMed] [Google Scholar]
  23. Van der Goot F. G., Podevin R. A., Corman B. J. Water permeabilities and salt reflection coefficients of luminal, basolateral and intracellular membrane vesicles isolated from rabbit kidney proximal tubule. Biochim Biophys Acta. 1989 Nov 27;986(2):332–340. doi: 10.1016/0005-2736(89)90485-9. [DOI] [PubMed] [Google Scholar]
  24. Wareing M., Wilson R. W., Kibble J. D., Green R. Estimated potassium reflection coefficient in perfused proximal convoluted tubules of the anaesthetized rat in vivo. J Physiol. 1995 Oct 1;488(Pt 1):153–161. doi: 10.1113/jphysiol.1995.sp020953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Weinstein A. M. Osmotic diuresis in a mathematical model of the rat proximal tubule. Am J Physiol. 1986 May;250(5 Pt 2):F874–F884. doi: 10.1152/ajprenal.1986.250.5.F874. [DOI] [PubMed] [Google Scholar]
  26. Welling L. W., Welling D. J., Ochs T. Relative osmotic effects of raffinose, KCl, and NaCl across basolateral cell membrane. Am J Physiol. 1990 Oct;259(4 Pt 2):F594–F597. doi: 10.1152/ajprenal.1990.259.4.F594. [DOI] [PubMed] [Google Scholar]
  27. Wingo C. S., Cain B. D. The renal H-K-ATPase: physiological significance and role in potassium homeostasis. Annu Rev Physiol. 1993;55:323–347. doi: 10.1146/annurev.ph.55.030193.001543. [DOI] [PubMed] [Google Scholar]
  28. Yu Z. W., Quinn P. J. Dimethyl sulphoxide: a review of its applications in cell biology. Biosci Rep. 1994 Dec;14(6):259–281. doi: 10.1007/BF01199051. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES