Abstract
1. At the rat neuromuscular junction, the postsynaptic folds and the voltage-gated sodium channels (VGSCs) within them are thought to amplify the effects of postsynaptic currents. In this study, the contribution of this effect to the safety factor for neuromuscular transmission, the ratio of the normal quantal content to the number of quanta required to reach threshold, has been estimated. 2. Normal quantal content was determined in isolated nerve-muscle preparations of rat soleus and extensor digitorum longus (EDL) muscles in which muscle action potentials were blocked by mu-conotoxin. The quantal content estimated from voltage recordings was 61.8 and 79.4 in soleus and EDL, respectively, and from charge measurements derived from current recordings was 46.3 (soleus) and 65.1 (EDL). 3. The threshold for action potential generation in response to nerve stimulation was determined from endplate potentials (EPPs) and endplate currents (EPCs) in preparations partially blocked with d-tubocurarine. The number of quanta required to reach threshold was estimated from voltage recordings to be 19.7 (soleus) and 23.2 (EDL) and from charge measurements derived from current recordings to be 13.3 (soleus) and 13.0 (EDL). 4. When intracellular electrodes were used to inject current into the muscle fibre, the total charge required to reach threshold was approximately twice that of the nerve-evoked threshold EPC. 5. The safety factor for nerve-evoked responses at the junction was 3.5 (soleus) and 5.0 (EDL). In the extrajunctional region the safety factor estimated from injected currents was 1.7 (soleus) and 2.5 (EDL). 6. It is concluded that the effect of the postsynaptic folds and the VGSCs within them is to double the safety factor. At normal frequencies of nerve impulse activity in vivo, this effect is likely to be crucial for ensuring effective neuromuscular transmission.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Betz W. J., Caldwell J. H., Kinnamon S. C. Increased sodium conductance in the synaptic region of rat skeletal muscle fibres. J Physiol. 1984 Jul;352:189–202. doi: 10.1113/jphysiol.1984.sp015286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Braga M. F., Anderson A. J., Harvey A. L., Rowan E. G. Apparent block of K+ currents in mouse motor nerve terminals by tetrodotoxin, mu-conotoxin and reduced external sodium. Br J Pharmacol. 1992 May;106(1):91–94. doi: 10.1111/j.1476-5381.1992.tb14298.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caldwell J. H., Campbell D. T., Beam K. G. Na channel distribution in vertebrate skeletal muscle. J Gen Physiol. 1986 Jun;87(6):907–932. doi: 10.1085/jgp.87.6.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang C. C., Chuang S. T., Huang M. C. Effects of chronic treatment with various neuromuscular blocking agents on the number and distribution of acetylcholine receptors in the rat diaphragm. J Physiol. 1975 Aug;250(1):161–173. doi: 10.1113/jphysiol.1975.sp011047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellisman M. H., Rash J. E., Staehelin L. A., Porter K. R. Studies of excitable membranes. II. A comparison of specializations at neuromuscular junctions and nonjunctional sarcolemmas of mammalian fast and slow twitch muscle fibers. J Cell Biol. 1976 Mar;68(3):752–774. doi: 10.1083/jcb.68.3.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Florendo J. A., Reger J. F., Law P. K. Electrophysiologic differences between mouse extensor digitorum longus and soleus. Exp Neurol. 1983 Nov;82(2):404–412. doi: 10.1016/0014-4886(83)90412-0. [DOI] [PubMed] [Google Scholar]
- Flucher B. E., Daniels M. P. Distribution of Na+ channels and ankyrin in neuromuscular junctions is complementary to that of acetylcholine receptors and the 43 kd protein. Neuron. 1989 Aug;3(2):163–175. doi: 10.1016/0896-6273(89)90029-9. [DOI] [PubMed] [Google Scholar]
- Gertler R. A., Robbins N. Differences in neuromuscular transmission in red and white muscles. Brain Res. 1978 Feb 17;142(1):160–164. doi: 10.1016/0006-8993(78)90186-5. [DOI] [PubMed] [Google Scholar]
- Glavinović M. I. Change of statistical parameters of transmitter release during various kinetic tests in unparalysed voltage-clamped rat diaphragm. J Physiol. 1979 May;290(2):481–497. doi: 10.1113/jphysiol.1979.sp012785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glavinović M. I. Voltage clamping of unparalysed cut rat diaphragm for study of transmitter release. J Physiol. 1979 May;290(2):467–480. doi: 10.1113/jphysiol.1979.sp012784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gray W. R., Olivera B. M., Cruz L. J. Peptide toxins from venomous Conus snails. Annu Rev Biochem. 1988;57:665–700. doi: 10.1146/annurev.bi.57.070188.003313. [DOI] [PubMed] [Google Scholar]
- Grubb B. D., Harris J. B., Schofield I. S. Neuromuscular transmission at newly formed neuromuscular junctions in the regenerating soleus muscle of the rat. J Physiol. 1991 Sep;441:405–421. doi: 10.1113/jphysiol.1991.sp018758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris J. B., Ribchester R. R. The relationship between end-plate size and transmitter release in normal and dystrophic muscles of the mouse. J Physiol. 1979 Nov;296:245–265. doi: 10.1113/jphysiol.1979.sp013003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hennig R., Lømo T. Firing patterns of motor units in normal rats. Nature. 1985 Mar 14;314(6007):164–166. doi: 10.1038/314164a0. [DOI] [PubMed] [Google Scholar]
- KARNOVSKY M. J., ROOTS L. A "DIRECT-COLORING" THIOCHOLINE METHOD FOR CHOLINESTERASES. J Histochem Cytochem. 1964 Mar;12:219–221. doi: 10.1177/12.3.219. [DOI] [PubMed] [Google Scholar]
- Kelly S. S., Roberts D. V. The effect of age on the safety factor in neuromuscular transmission in the isolated diaphragm of the rat. Br J Anaesth. 1977 Mar;49(3):217–222. doi: 10.1093/bja/49.3.217. [DOI] [PubMed] [Google Scholar]
- Kuno M., Turkanis S. A., Weakly J. N. Correlation between nerve terminal size and transmitter release at the neuromuscular junction of the frog. J Physiol. 1971 Mar;213(3):545–556. doi: 10.1113/jphysiol.1971.sp009399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin A. R. The effect of membrane capacitance on non-linear summation of synaptic potentials. J Theor Biol. 1976 Jun;59(1):179–187. doi: 10.1016/s0022-5193(76)80031-8. [DOI] [PubMed] [Google Scholar]
- McArdle J. J., Sansone F. M. Re-innervation of fast and slow twitch muscle following nerve crush at birth. J Physiol. 1977 Oct;271(3):567–586. doi: 10.1113/jphysiol.1977.sp012015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milton R. L., Lupa M. T., Caldwell J. H. Fast and slow twitch skeletal muscle fibres differ in their distribution of Na channels near the endplate. Neurosci Lett. 1992 Jan 20;135(1):41–44. doi: 10.1016/0304-3940(92)90131-p. [DOI] [PubMed] [Google Scholar]
- Ogata T. Structure of motor endplates in the different fiber types of vertebrate skeletal muscles. Arch Histol Cytol. 1988 Dec;51(5):385–424. doi: 10.1679/aohc.51.385. [DOI] [PubMed] [Google Scholar]
- Padykula H. A., Gauthier G. F. The ultrastructure of the neuromuscular junctions of mammalian red, white, and intermediate skeletal muscle fibers. J Cell Biol. 1970 Jul;46(1):27–41. doi: 10.1083/jcb.46.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paton W. D., Waud D. R. The margin of safety of neuromuscular transmission. J Physiol. 1967 Jul;191(1):59–90. doi: 10.1113/jphysiol.1967.sp008237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plomp J. J., Van Kempen G. T., De Baets M. B., Graus Y. M., Kuks J. B., Molenaar P. C. Acetylcholine release in myasthenia gravis: regulation at single end-plate level. Ann Neurol. 1995 May;37(5):627–636. doi: 10.1002/ana.410370513. [DOI] [PubMed] [Google Scholar]
- Ruff R. L. Na current density at and away from end plates on rat fast- and slow-twitch skeletal muscle fibers. Am J Physiol. 1992 Jan;262(1 Pt 1):C229–C234. doi: 10.1152/ajpcell.1992.262.1.C229. [DOI] [PubMed] [Google Scholar]
- Ruff R. L., Simoncini L., Stühmer W. Comparison between slow sodium channel inactivation in rat slow- and fast-twitch muscle. J Physiol. 1987 Feb;383:339–348. doi: 10.1113/jphysiol.1987.sp016412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slater C. R., Lyons P. R., Walls T. J., Fawcett P. R., Young C. Structure and function of neuromuscular junctions in the vastus lateralis of man. A motor point biopsy study of two groups of patients. Brain. 1992 Apr;115(Pt 2):451–478. [PubMed] [Google Scholar]
- Sterz R., Pagala M., Peper K. Postjunctional characteristics of the endplates in mammalian fast and slow muscles. Pflugers Arch. 1983 Jun;398(1):48–54. doi: 10.1007/BF00584712. [DOI] [PubMed] [Google Scholar]
- Stevens C. F. A comment on Martin's relation. Biophys J. 1976 Aug;16(8):891–895. doi: 10.1016/S0006-3495(76)85739-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tonge D. A. Chronic effects of botulinum toxin on neuromuscular transmission and sensitivity to acetylcholine in slow and fast skeletal muscle of the mouse. J Physiol. 1974 Aug;241(1):127–139. doi: 10.1113/jphysiol.1974.sp010644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood S. J., Slater C. R. Action potential generation in rat slow- and fast-twitch muscles. J Physiol. 1995 Jul 15;486(Pt 2):401–410. doi: 10.1113/jphysiol.1995.sp020821. [DOI] [PMC free article] [PubMed] [Google Scholar]

