Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Apr 1;500(Pt 1):213–225. doi: 10.1113/jphysiol.1997.sp022011

Direct observations of sympathetic cholinergic vasodilatation of skeletal muscle small arteries in the cat.

K Matsukawa 1, T Shindo 1, M Shirai 1, I Ninomiya 1
PMCID: PMC1159371  PMID: 9097945

Abstract

1. The aim of this study was to examine the actual changes of the internal diameter (i.d.) of arterial vessels of skeletal muscle evoked by activation of sympathetic cholinergic nerve fibres during stimulation of the hypothalamic defence area in anaesthetized cats. 2. For this purpose, we have used our novel X-ray TV system for visualizing small arteries (100-500 microm i.d.) of the triceps surae muscle and larger extramuscular arteries (500-1400 microm i.d.) of the hindlimb (the femoral (FA), popliteal (PA) and distal caudal femoral (DCFA) arteries). The passage of a contrast medium from the large extramuscular arteries to the smaller intramuscular arteries was serially measured before and during hypothalamic stimulation. 3. Hypothalamic stimulation increased mean arterial blood pressure, heart rate and femoral vascular conductance. The i.d. of FA, PA, and DCFA did not change during the hypothalamic stimulation, whereas the i.d. of small arteries in the triceps surae muscle increased by 48 +/- 2% (mean +/- S.E.M.) and the cross-sectional area increased concomitantly by 118%. The maximum increase in i.d. of 78 +/- 6%, was observed in arteries of 100-200 microm. These increases in diameter were markedly reduced by intra-arterial injection of atropine or by cutting the sciatic nerve, but not by phentolamine and propranolol given together. 4. The vasodilatation evoked by hypothalamic stimulation was seen in almost all the sections of the small arteries observed under control conditions and was distributed along the entire length of the vessel. In addition, the number of arterial vessels that could be detected increased by 42% during hypothalamic stimulation. The newly detected arterial branches, which ranged from 100 to 300 microm in diameter, mostly arose from the branching points. 5. It is concluded that stimulation of sympathetic cholinergic nerve fibres dilates the small arteries of skeletal muscle ranging from 100 to 500 microm, but not the larger extramuscular arteries.

Full text

PDF
213

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAHAMS V. C., HILTON S. M. THE ROLE OF ACTIVE MUSCLE VASODILATATION IN THE ALERTING STAGE OF THE DEFENCE REACTION. J Physiol. 1964 Jun;171:189–202. doi: 10.1113/jphysiol.1964.sp007371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ABRAHAMS V. C., HILTON S. M., ZBROZYNA A. Active muscle vasodilatation produced by stimulation of the brain stem: its significance in the defence reaction. J Physiol. 1960 Dec;154:491–513. doi: 10.1113/jphysiol.1960.sp006593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bandler R., Carrive P., Zhang S. P. Integration of somatic and autonomic reactions within the midbrain periaqueductal grey: viscerotopic, somatotopic and functional organization. Prog Brain Res. 1991;87:269–305. doi: 10.1016/s0079-6123(08)63056-3. [DOI] [PubMed] [Google Scholar]
  4. Bevan J. A., Laher I. Pressure and flow-dependent vascular tone. FASEB J. 1991 Jun;5(9):2267–2273. doi: 10.1096/fasebj.5.9.1860618. [DOI] [PubMed] [Google Scholar]
  5. Boegehold M. A., Johnson P. C. Response of arteriolar network of skeletal muscle to sympathetic nerve stimulation. Am J Physiol. 1988 May;254(5 Pt 2):H919–H928. doi: 10.1152/ajpheart.1988.254.5.H919. [DOI] [PubMed] [Google Scholar]
  6. Bolme P., Fuxe K. Adrenergic and cholinergic nerve terminals in skeletal muscle vessels. Acta Physiol Scand. 1970 Jan;78(1):52–59. doi: 10.1111/j.1748-1716.1970.tb04638.x. [DOI] [PubMed] [Google Scholar]
  7. Bolme P., Nagai S. H., Uvnäs B., Wallenberg L. R. Circulatory and behavioural effects on electrical stimulation of the sympathetic vasodilator areas in the hypothalamus and the mesencephalon in unanesthetized dogs. Acta Physiol Scand. 1967 Jul-Aug;70(3):334–336. doi: 10.1111/j.1748-1716.1967.tb03633.x. [DOI] [PubMed] [Google Scholar]
  8. ELIASSON S., FOLKOW B., LINDGREN P., UVNAS B. Activation of sympathetic vasodilator nerves to the skeletal muscles in the cat by hypothalamic stimulation. Acta Physiol Scand. 1951 Sep 21;23(4):333–351. doi: 10.1111/j.1748-1716.1951.tb00819.x. [DOI] [PubMed] [Google Scholar]
  9. Eriksson E., Lisander B. Changes in precapillary resistance in skeletal muscle vessels studied by intravital microscopy. Acta Physiol Scand. 1972 Mar;84(3):295–305. doi: 10.1111/j.1748-1716.1972.tb05181.x. [DOI] [PubMed] [Google Scholar]
  10. FOLKOW B., MELLANDER S., OBERG B. The range of effect of the sympathetic vasodilator fibres with regard to consecutive sections of the muscle vessels. Acta Physiol Scand. 1961 Sep;53:7–22. doi: 10.1111/j.1748-1716.1961.tb02260.x. [DOI] [PubMed] [Google Scholar]
  11. FUXE K., SEDVALL G. THE DISTRIBUTION OF ADRENERGIC NERVE FIBRES TO THE BLOOD VESSELS IN SKELETAL MUSCLE. Acta Physiol Scand. 1965 May-Jun;64:75–86. doi: 10.1111/j.1748-1716.1965.tb04155.x. [DOI] [PubMed] [Google Scholar]
  12. Folkow B., Sonnenschein R. R., Wright D. L. Loci of neurogenic and metabolic effects on precapillary vessels of skeletal muscle. Acta Physiol Scand. 1971 Apr;81(4):459–471. doi: 10.1111/j.1748-1716.1971.tb04924.x. [DOI] [PubMed] [Google Scholar]
  13. Hilal S. K. Hemodynamic changes associated with the intra-arterial injection of contrast media. New toxicity tests and a new experimental contrast medium. Radiology. 1966 Apr;86(4):615–633. doi: 10.1148/86.4.615. [DOI] [PubMed] [Google Scholar]
  14. Hilton S. M., Marshall J. M., Timms R. J. Ventral medullary relay neurones in the pathway from the defence areas of the cat and their effect on blood pressure. J Physiol. 1983 Dec;345:149–166. doi: 10.1113/jphysiol.1983.sp014971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hébert M. T., Marshall J. M. Direct observations of the effects of baroreceptor stimulation on skeletal muscle circulation of the rat. J Physiol. 1988 Jun;400:45–59. doi: 10.1113/jphysiol.1988.sp017109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaiser L., Hull S. S., Jr, Sparks H. V., Jr Methylene blue and ETYA block flow-dependent dilation in canine femoral artery. Am J Physiol. 1986 Jun;250(6 Pt 2):H974–H981. doi: 10.1152/ajpheart.1986.250.6.H974. [DOI] [PubMed] [Google Scholar]
  17. Koller A., Kaley G. Endothelium regulates skeletal muscle microcirculation by a blood flow velocity-sensing mechanism. Am J Physiol. 1990 Mar;258(3 Pt 2):H916–H920. doi: 10.1152/ajpheart.1990.258.3.H916. [DOI] [PubMed] [Google Scholar]
  18. Marshall J. M. The influence of the sympathetic nervous system on individual vessels of the microcirculation of skeletal muscle of the rat. J Physiol. 1982 Nov;332:169–186. doi: 10.1113/jphysiol.1982.sp014408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Matsukawa K., Shindo T., Shirai M., Ninomiya I. Nitric oxide mediates cat hindlimb cholinergic vasodilation induced by stimulation of posterior hypothalamus. Jpn J Physiol. 1993;43(4):473–483. doi: 10.2170/jjphysiol.43.473. [DOI] [PubMed] [Google Scholar]
  20. Sada K., Shirai M., Ninomiya I. Vagally and acetylcholine-mediated constriction in small pulmonary vessels of rabbits. J Appl Physiol (1985) 1987 Oct;63(4):1601–1609. doi: 10.1152/jappl.1987.63.4.1601. [DOI] [PubMed] [Google Scholar]
  21. Sada K., Shirai M., Ninomiya I. X-ray TV system for measuring microcirculation in small pulmonary vessels. J Appl Physiol (1985) 1985 Sep;59(3):1013–1018. doi: 10.1152/jappl.1985.59.3.1013. [DOI] [PubMed] [Google Scholar]
  22. Segal S. S., Duling B. R. Communication between feed arteries and microvessels in hamster striated muscle: segmental vascular responses are functionally coordinated. Circ Res. 1986 Sep;59(3):283–290. doi: 10.1161/01.res.59.3.283. [DOI] [PubMed] [Google Scholar]
  23. Segal S. S., Duling B. R. Conduction of vasomotor responses in arterioles: a role for cell-to-cell coupling? Am J Physiol. 1989 Mar;256(3 Pt 2):H838–H845. doi: 10.1152/ajpheart.1989.256.3.H838. [DOI] [PubMed] [Google Scholar]
  24. Segal S. S., Duling B. R. Flow control among microvessels coordinated by intercellular conduction. Science. 1986 Nov 14;234(4778):868–870. doi: 10.1126/science.3775368. [DOI] [PubMed] [Google Scholar]
  25. Shirai M., Shindo T., Shimouchi A., Ninomiya I. Diameter and flow velocity changes of feline small pulmonary vessels in response to sympathetic nerve stimulation. Pflugers Arch. 1994 Dec;429(2):267–273. doi: 10.1007/BF00374322. [DOI] [PubMed] [Google Scholar]
  26. Steiner R. M., Grainger R. G., Memon N., Weiss D., Kanofsky P. B., Menduke H. The effect of contrast media of low osmolality on the peripheral arterial blood flow in the dog. Clin Radiol. 1980 Nov;31(6):621–627. doi: 10.1016/s0009-9260(80)80001-8. [DOI] [PubMed] [Google Scholar]
  27. UVNAS B. Sympathetic vasodilator outflow. Physiol Rev. 1954 Jul;34(3):608–618. doi: 10.1152/physrev.1954.34.3.608. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES