Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 May 1;500(Pt 3):605–616. doi: 10.1113/jphysiol.1997.sp022046

Two K(+)-selective conductances in single proximal tubule cells isolated from frog kidney are regulated by ATP.

L Robson 1, M Hunter 1
PMCID: PMC1159412  PMID: 9161979

Abstract

1. The whole-cell and single channel patch clamp techniques were used to identify K(+)-selective conductances in single proximal tubule cells isolated from frog kidney and to examine their ATP sensitivity. Whole-cell currents were inhibited by the K+ channel inhibitors Ba2+ and quinidine in a dose-dependent manner. Addition of Ba2+ alone, quinidine alone, or both inhibitors together revealed two separate conductances, one of which was blocked by both Ba2+ and quinidine (GBa)1, the other being sensitive to quinidine alone (Gquin). 2. With Na(+)-containing Ringer solution in the bath and K(+)-containing Ringer solution in the pipette, both currents were selective for K+ over Na+. The K+ : Na+ selectivity ratio of GBa was around 50:1, while that of Gquin was 4:1. In symmetrical KCl solutions GBa showed inward rectification, while Gquin demonstrated outward rectification. 3. In the absence of pipette ATP, both GBa and Gquin ran down over 10 min. However, when 2 mM ATP was included in the pipette GBa increased, while Gquin remained unchanged. 4. Single channel studies demonstrated that a basolateral K+ channel shared several of the characteristics of GBa. It was inhibited by both Ba2+ and quinidine, underwent run-down in excised patches in the absence of ATP, and was activated by ATP. 5. We conclude that cells of the frog proximal tubule contain at least two distinct K(+)-selective conductances, both of which are regulated by ATP, and which may be involved in pump-leak coupling.

Full text

PDF
605

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J Gen Physiol. 1971 Oct;58(4):413–437. doi: 10.1085/jgp.58.4.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashcroft F. M., Kakei M. ATP-sensitive K+ channels in rat pancreatic beta-cells: modulation by ATP and Mg2+ ions. J Physiol. 1989 Sep;416:349–367. doi: 10.1113/jphysiol.1989.sp017765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balser J. R., Bennett P. B., Hondeghem L. M., Roden D. M. Suppression of time-dependent outward current in guinea pig ventricular myocytes. Actions of quinidine and amiodarone. Circ Res. 1991 Aug;69(2):519–529. doi: 10.1161/01.res.69.2.519. [DOI] [PubMed] [Google Scholar]
  4. Beck J. S., Hurst A. M., Lapointe J. Y., Laprade R. Regulation of basolateral K channels in proximal tubule studied during continuous microperfusion. Am J Physiol. 1993 Mar;264(3 Pt 2):F496–F501. doi: 10.1152/ajprenal.1993.264.3.F496. [DOI] [PubMed] [Google Scholar]
  5. Christensen O., Zeuthen T. Maxi K+ channels in leaky epithelia are regulated by intracellular Ca2+, pH and membrane potential. Pflugers Arch. 1987 Mar;408(3):249–259. doi: 10.1007/BF02181467. [DOI] [PubMed] [Google Scholar]
  6. De Wolf I., Van Driessche W. Voltage-dependent Ba2+ block of K+ channels in apical membrane of frog skin. Am J Physiol. 1986 Nov;251(5 Pt 1):C696–C706. doi: 10.1152/ajpcell.1986.251.5.C696. [DOI] [PubMed] [Google Scholar]
  7. Filipovic D., Sackin H. A calcium-permeable stretch-activated cation channel in renal proximal tubule. Am J Physiol. 1991 Jan;260(1 Pt 2):F119–F129. doi: 10.1152/ajprenal.1991.260.1.F119. [DOI] [PubMed] [Google Scholar]
  8. Filipovic D., Sackin H. Stretch- and volume-activated channels in isolated proximal tubule cells. Am J Physiol. 1992 May;262(5 Pt 2):F857–F870. doi: 10.1152/ajprenal.1992.262.5.F857. [DOI] [PubMed] [Google Scholar]
  9. García-Díaz J. F. Whole-cell and single channel K+ and Cl- currents in epithelial cells of frog skin. J Gen Physiol. 1991 Jul;98(1):131–161. doi: 10.1085/jgp.98.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Germann W. J., Lowy M. E., Ernst S. A., Dawson D. C. Differentiation of two distinct K conductances in the basolateral membrane of turtle colon. J Gen Physiol. 1986 Aug;88(2):237–251. doi: 10.1085/jgp.88.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gitter A. H., Beyenbach K. W., Christine C. W., Gross P., Minuth W. W., Frömter E. High-conductance K+ channel in apical membranes of principal cells cultured from rabbit renal cortical collecting duct anlagen. Pflugers Arch. 1987 Mar;408(3):282–290. doi: 10.1007/BF02181471. [DOI] [PubMed] [Google Scholar]
  12. Ho K., Nichols C. G., Lederer W. J., Lytton J., Vassilev P. M., Kanazirska M. V., Hebert S. C. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature. 1993 Mar 4;362(6415):31–38. doi: 10.1038/362031a0. [DOI] [PubMed] [Google Scholar]
  13. Hudson R. L., Schultz S. G. Sodium-coupled glycine uptake by Ehrlich ascites tumor cells results in an increase in cell volume and plasma membrane channel activities. Proc Natl Acad Sci U S A. 1988 Jan;85(1):279–283. doi: 10.1073/pnas.85.1.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hunter M. Potassium-selective channels in the basolateral membrane of single proximal tubule cells of frog kidney. Pflugers Arch. 1991 Mar;418(1-2):26–34. doi: 10.1007/BF00370448. [DOI] [PubMed] [Google Scholar]
  15. Hunter M. Stretch-activated channels in the basolateral membrane of single proximal cells of frog kidney. Pflugers Arch. 1990 Jun;416(4):448–453. doi: 10.1007/BF00370753. [DOI] [PubMed] [Google Scholar]
  16. Hurst A. M., Beck J. S., Laprade R., Lapointe J. Y. Na+ pump inhibition downregulates an ATP-sensitive K+ channel in rabbit proximal convoluted tubule. Am J Physiol. 1993 Apr;264(4 Pt 2):F760–F764. doi: 10.1152/ajprenal.1993.264.4.F760. [DOI] [PubMed] [Google Scholar]
  17. Ishikawa T., Cook D. I. Effects of K+ channel blockers on inwardly and outwardly rectifying whole-cell K+ currents in sheep parotid secretory cells. J Membr Biol. 1993 Apr;133(1):29–41. doi: 10.1007/BF00231875. [DOI] [PubMed] [Google Scholar]
  18. Kawahara K., Hunter M., Giebisch G. Potassium channels in Necturus proximal tubule. Am J Physiol. 1987 Sep;253(3 Pt 2):F488–F494. doi: 10.1152/ajprenal.1987.253.3.F488. [DOI] [PubMed] [Google Scholar]
  19. Kehl S. J. Quinidine-induced inhibition of the fast transient outward K+ current in rat melanotrophs. Br J Pharmacol. 1991 Jul;103(3):1807–1813. doi: 10.1111/j.1476-5381.1991.tb09867.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lapointe J. Y., Garneau L., Bell P. D., Cardinal J. Membrane crosstalk in the mammalian proximal tubule during alterations in transepithelial sodium transport. Am J Physiol. 1990 Feb;258(2 Pt 2):F339–F345. doi: 10.1152/ajprenal.1990.258.2.F339. [DOI] [PubMed] [Google Scholar]
  21. Lau K. R., Hudson R. L., Schultz S. G. Cell swelling increases a barium-inhibitable potassium conductance in the basolateral membrane of Necturus small intestine. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3591–3594. doi: 10.1073/pnas.81.11.3591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Merot J., Bidet M., Le Maout S., Tauc M., Poujeol P. Two types of K+ channels in the apical membrane of rabbit proximal tubule in primary culture. Biochim Biophys Acta. 1989 Jan 16;978(1):134–144. doi: 10.1016/0005-2736(89)90508-7. [DOI] [PubMed] [Google Scholar]
  23. Messner G., Wang W., Paulmichl M., Oberleithner H., Lang F. Ouabain decreases apparent potassium-conductance in proximal tubules of the amphibian kidney. Pflugers Arch. 1985 May;404(2):131–137. doi: 10.1007/BF00585408. [DOI] [PubMed] [Google Scholar]
  24. Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983 Sep 8;305(5930):147–148. doi: 10.1038/305147a0. [DOI] [PubMed] [Google Scholar]
  25. Ohno-Shosaku T., Kubota T., Yamaguchi J., Fukase M., Fujita T., Fujimoto M. Reciprocal effects of Ca2+ and Mg-ATP on the 'run-down' of the K+ channels in opossum kidney cells. Pflugers Arch. 1989 Mar;413(5):562–564. doi: 10.1007/BF00594190. [DOI] [PubMed] [Google Scholar]
  26. Ribalet B., Ciani S., Eddlestone G. T. ATP mediates both activation and inhibition of K(ATP) channel activity via cAMP-dependent protein kinase in insulin-secreting cell lines. J Gen Physiol. 1989 Oct;94(4):693–717. doi: 10.1085/jgp.94.4.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Robson L., Hunter M. Role of cell volume and protein kinase C in regulation of a Cl- conductance in single proximal tubule cells of Rana temporaria. J Physiol. 1994 Oct 1;480(Pt 1):1–7. doi: 10.1113/jphysiol.1994.sp020335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sansom S. C., Mougouris T., Ono S., DuBose T. D., Jr ATP-sensitive K(+)-selective channels of inner medullary collecting duct cells. Am J Physiol. 1994 Sep;267(3 Pt 2):F489–F496. doi: 10.1152/ajprenal.1994.267.3.F489. [DOI] [PubMed] [Google Scholar]
  29. Snyders J., Knoth K. M., Roberds S. L., Tamkun M. M. Time-, voltage-, and state-dependent block by quinidine of a cloned human cardiac potassium channel. Mol Pharmacol. 1992 Feb;41(2):322–330. [PubMed] [Google Scholar]
  30. Spruce A. E., Standen N. B., Stanfield P. R. Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature. 1985 Aug 22;316(6030):736–738. doi: 10.1038/316736a0. [DOI] [PubMed] [Google Scholar]
  31. Tatsuta H., Ueda S., Morishima S., Okada Y. Voltage- and time-dependent K+ channel currents in the basolateral membrane of villus enterocytes isolated from guinea pig small intestine. J Gen Physiol. 1994 Mar;103(3):429–446. doi: 10.1085/jgp.103.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Woodhull A. M. Ionic blockage of sodium channels in nerve. J Gen Physiol. 1973 Jun;61(6):687–708. doi: 10.1085/jgp.61.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES