Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Jun 15;501(Pt 3):671–675. doi: 10.1111/j.1469-7793.1997.671bm.x

Sympathetic nerve traffic correlates with the release of nitric oxide in humans: implications for blood pressure control.

J O Skarphedinsson 1, M Elam 1, L Jungersten 1, B G Wallin 1
PMCID: PMC1159467  PMID: 9218226

Abstract

1. Resting human sympathetic vasoconstrictor traffic displays large reproducible inter-individual differences which are similar in nerves to muscle, heart and kidney. In spite of this there is no correlation between levels of blood pressure and sympathetic traffic. To test the hypothesis that the pressor effect of the vasoconstrictor activity is counteracted by a circulating dilating factor we measured muscle nerve sympathetic activity (MSA) and an indicator of nitric oxide release (plasma nitrate) in healthy young males. 2. Sympathetic activity was recorded with the microneurographic technique in the peroneal nerve and a forearm venous plasma sample was obtained in twenty-one normotensive males aged 21-28 years. Plasma nitrate was analysed by gas chromatography and mass spectrometry. 3. There was a positive linear correlation between the plasma nitrate concentration and the strength of MSA both when the nerve activity was expressed as bursts per minute and bursts per 100 heart beats (r = 0.51, P = 0.02 and r = 0.46, P = 0.04, respectively). 4. The data suggest that the stronger the sympathetic activity the higher the release of the dilating substance, nitric oxide. This would be expected to counteract vasoconstrictor effects of the nerve traffic and thereby contribute to the lack of relationship between resting levels of MSA and blood pressure. We speculate that altered coupling between sympathetic traffic and nitric oxide release may cause abnormal peripheral resistance, e.g. in hypertension.

Full text

PDF
671

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dun N. J., Dun S. L., Wu S. Y., Förstermann U. Nitric oxide synthase immunoreactivity in rat superior cervical ganglia and adrenal glands. Neurosci Lett. 1993 Aug 6;158(1):51–54. doi: 10.1016/0304-3940(93)90610-w. [DOI] [PubMed] [Google Scholar]
  2. Fabi F., Argiolas L., Chiavarelli M., Del Basso P. Nitric oxide-dependent and -independent modulation of sympathetic vasoconstriction in the human saphenous vein. Eur J Pharmacol. 1996 Aug 1;309(1):41–50. doi: 10.1016/0014-2999(96)00316-0. [DOI] [PubMed] [Google Scholar]
  3. Gudbjörnsdóttir S., Lönnroth P., Sverrisdóttir Y. B., Wallin B. G., Elam M. Sympathetic nerve activity and insulin in obese normotensive and hypertensive men. Hypertension. 1996 Feb;27(2):276–280. doi: 10.1161/01.hyp.27.2.276. [DOI] [PubMed] [Google Scholar]
  4. Jungersten L., Ambring A., Wall B., Wennmalm A. Both physical fitness and acute exercise regulate nitric oxide formation in healthy humans. J Appl Physiol (1985) 1997 Mar;82(3):760–764. doi: 10.1152/jappl.1997.82.3.760. [DOI] [PubMed] [Google Scholar]
  5. Jungersten L., Edlund A., Petersson A. S., Wennmalm A. Plasma nitrate as an index of nitric oxide formation in man: analyses of kinetics and confounding factors. Clin Physiol. 1996 Jul;16(4):369–379. doi: 10.1111/j.1475-097x.1996.tb00726.x. [DOI] [PubMed] [Google Scholar]
  6. Leimbach W. N., Jr, Wallin B. G., Victor R. G., Aylward P. E., Sundlöf G., Mark A. L. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation. 1986 May;73(5):913–919. doi: 10.1161/01.cir.73.5.913. [DOI] [PubMed] [Google Scholar]
  7. Miller V. M., Burnett J. C., Jr Modulation of NO and endothelin by chronic increases in blood flow in canine femoral arteries. Am J Physiol. 1992 Jul;263(1 Pt 2):H103–H108. doi: 10.1152/ajpheart.1992.263.1.H103. [DOI] [PubMed] [Google Scholar]
  8. Miller V. M., Vanhoutte P. M. Endothelial alpha 2-adrenoceptors in canine pulmonary and systemic blood vessels. Eur J Pharmacol. 1985 Nov 26;118(1-2):123–129. doi: 10.1016/0014-2999(85)90670-3. [DOI] [PubMed] [Google Scholar]
  9. Modin A., Weitzberg E., Hökfelt T., Lundberg J. M. Nitric oxide synthase in the pig autonomic nervous system in relation to the influence of NG--nitro-L-arginine on sympathetic and parasympathetic vascular control in vivo. Neuroscience. 1994 Sep;62(1):189–203. doi: 10.1016/0306-4522(94)90324-7. [DOI] [PubMed] [Google Scholar]
  10. Nase G. P., Boegehold M. A. Nitric oxide modulates arteriolar responses to increased sympathetic nerve activity. Am J Physiol. 1996 Sep;271(3 Pt 2):H860–H869. doi: 10.1152/ajpheart.1996.271.3.H860. [DOI] [PubMed] [Google Scholar]
  11. Stamler J. S., Jaraki O., Osborne J., Simon D. I., Keaney J., Vita J., Singel D., Valeri C. R., Loscalzo J. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7674–7677. doi: 10.1073/pnas.89.16.7674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sundlöf G., Wallin B. G. Human muscle nerve sympathetic activity at rest. Relationship to blood pressure and age. J Physiol. 1978 Jan;274:621–637. doi: 10.1113/jphysiol.1978.sp012170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sundlöf G., Wallin B. G. The variability of muscle nerve sympathetic activity in resting recumbent man. J Physiol. 1977 Nov;272(2):383–397. doi: 10.1113/jphysiol.1977.sp012050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wallin B. G., Esler M., Dorward P., Eisenhofer G., Ferrier C., Westerman R., Jennings G. Simultaneous measurements of cardiac noradrenaline spillover and sympathetic outflow to skeletal muscle in humans. J Physiol. 1992;453:45–58. doi: 10.1113/jphysiol.1992.sp019217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wallin B. G., Sundlöf G., Eriksson B. M., Dominiak P., Grobecker H., Lindblad L. E. Plasma noradrenaline correlates to sympathetic muscle nerve activity in normotensive man. Acta Physiol Scand. 1981 Jan;111(1):69–73. doi: 10.1111/j.1748-1716.1981.tb06706.x. [DOI] [PubMed] [Google Scholar]
  16. Wallin B. G., Thompson J. M., Jennings G. L., Esler M. D. Renal noradrenaline spillover correlates with muscle sympathetic activity in humans. J Physiol. 1996 Mar 15;491(Pt 3):881–887. doi: 10.1113/jphysiol.1996.sp021265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Westfelt U. N., Benthin G., Lundin S., Stenqvist O., Wennmalm A. Conversion of inhaled nitric oxide to nitrate in man. Br J Pharmacol. 1995 Apr;114(8):1621–1624. doi: 10.1111/j.1476-5381.1995.tb14948.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Winlaw D. S., Smythe G. A., Keogh A. M., Schyvens C. G., Spratt P. M., Macdonald P. S. Increased nitric oxide production in heart failure. Lancet. 1994 Aug 6;344(8919):373–374. doi: 10.1016/s0140-6736(94)91403-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES