Abstract
1. Human large-conductance voltage- and calcium-sensitive K+ (maxi KCa) channels are composed of at least two subunits: the pore-forming subunit, alpha, and a modulatory subunit, beta. Expression of the beta subunit induces dramatic changes in alpha subunit function. It increases the apparent Ca2+ sensitivity and it allows dehydrosoyasaponin I (DHS-I) to upregulate the channel. 2. The functional coupling of maxi KCa channel alpha and beta subunits in freshly dissociated human coronary smooth muscle cells was assessed. To distinguish maxi KCa currents modulated by the beta subunit, we examined (a) their apparent Ca2+ sensitivity, as judged from the voltage necessary to half-activate the channel (V1/2), and (b) their activation by DHS-I. 3. In patches with unitary currents, the majority of channels were half-activated near -85 mV at 18 microM Ca2+, a value similar to that obtained when the human KCa channel alpha (HSLO) and beta (HKV,Ca beta) subunits are co-expressed. A small number of channels half-activated around 0 mV, suggesting the activity of the alpha subunit alone. 4. The properties of macroscopic currents were consistent with the view that most pore-forming alpha subunits were coupled to beta subunits, since the majority of currents had values for V1/2 near to -90 mV, and currents were potentiated by DHS-I. 5. We conclude that in human coronary artery smooth muscle cells, most maxi KCa channels are composed of alpha and beta subunits. The higher Ca2+ sensitivity of maxi KCa channels, resulting from their coupling to beta subunits, suggests an important role of this channel in regulating coronary tone. Their massive activation by micromolar Ca2+ concentrations may lead to a large hyperpolarization causing profound changes in coronary blood flow and cardiac function.
Full text
PDF












Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anwer K., Oberti C., Perez G. J., Perez-Reyes N., McDougall J. K., Monga M., Sanborn B. M., Stefani E., Toro L. Calcium-activated K+ channels as modulators of human myometrial contractile activity. Am J Physiol. 1993 Oct;265(4 Pt 1):C976–C985. doi: 10.1152/ajpcell.1993.265.4.C976. [DOI] [PubMed] [Google Scholar]
- Benham C. D., Bolton T. B. Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit. J Physiol. 1986 Dec;381:385–406. doi: 10.1113/jphysiol.1986.sp016333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buljubasic N., Marijic J., Kampine J. P., Bosnjak Z. J. Calcium-sensitive potassium current in isolated canine coronary smooth muscle cells. Can J Physiol Pharmacol. 1994 Mar;72(3):189–198. doi: 10.1139/y94-030. [DOI] [PubMed] [Google Scholar]
- Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 1988;157:378–417. doi: 10.1016/0076-6879(88)57093-3. [DOI] [PubMed] [Google Scholar]
- Garcia-Calvo M., Knaus H. G., McManus O. B., Giangiacomo K. M., Kaczorowski G. J., Garcia M. L. Purification and reconstitution of the high-conductance, calcium-activated potassium channel from tracheal smooth muscle. J Biol Chem. 1994 Jan 7;269(1):676–682. [PubMed] [Google Scholar]
- Gollasch M., Ried C., Bychkov R., Luft F. C., Haller H. K+ currents in human coronary artery vascular smooth muscle cells. Circ Res. 1996 Apr;78(4):676–688. doi: 10.1161/01.res.78.4.676. [DOI] [PubMed] [Google Scholar]
- Ishikawa T., Hume J. R., Keef K. D. Modulation of K+ and Ca2+ channels by histamine H1-receptor stimulation in rabbit coronary artery cells. J Physiol. 1993 Aug;468:379–400. doi: 10.1113/jphysiol.1993.sp019777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito Y., Kitamura K., Kuriyama H. Effects of acetylcholine and catecholamines on the smooth muscle cell of the porcine coronary artery. J Physiol. 1979 Sep;294:595–611. doi: 10.1113/jphysiol.1979.sp012948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klöckner U., Isenberg G. Action potentials and net membrane currents of isolated smooth muscle cells (urinary bladder of the guinea-pig). Pflugers Arch. 1985 Dec;405(4):329–339. doi: 10.1007/BF00595685. [DOI] [PubMed] [Google Scholar]
- Knaus H. G., Garcia-Calvo M., Kaczorowski G. J., Garcia M. L. Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels. J Biol Chem. 1994 Feb 11;269(6):3921–3924. [PubMed] [Google Scholar]
- Kodama M., Kanaide H., Abe S., Hirano K., Kai H., Nakamura M. Endothelin-induced Ca-independent contraction of the porcine coronary artery. Biochem Biophys Res Commun. 1989 May 15;160(3):1302–1308. doi: 10.1016/s0006-291x(89)80145-7. [DOI] [PubMed] [Google Scholar]
- Lagrutta A., Shen K. Z., North R. A., Adelman J. P. Functional differences among alternatively spliced variants of Slowpoke, a Drosophila calcium-activated potassium channel. J Biol Chem. 1994 Aug 12;269(32):20347–20351. [PubMed] [Google Scholar]
- Leblanc N., Wan X., Leung P. M. Physiological role of Ca(2+)-activated and voltage-dependent K+ currents in rabbit coronary myocytes. Am J Physiol. 1994 Jun;266(6 Pt 1):C1523–C1537. doi: 10.1152/ajpcell.1994.266.6.C1523. [DOI] [PubMed] [Google Scholar]
- McCobb D. P., Fowler N. L., Featherstone T., Lingle C. J., Saito M., Krause J. E., Salkoff L. A human calcium-activated potassium channel gene expressed in vascular smooth muscle. Am J Physiol. 1995 Sep;269(3 Pt 2):H767–H777. doi: 10.1152/ajpheart.1995.269.3.H767. [DOI] [PubMed] [Google Scholar]
- McManus O. B. Calcium-activated potassium channels: regulation by calcium. J Bioenerg Biomembr. 1991 Aug;23(4):537–560. doi: 10.1007/BF00785810. [DOI] [PubMed] [Google Scholar]
- McManus O. B., Helms L. M., Pallanck L., Ganetzky B., Swanson R., Leonard R. J. Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron. 1995 Mar;14(3):645–650. doi: 10.1016/0896-6273(95)90321-6. [DOI] [PubMed] [Google Scholar]
- Meera P., Wallner M., Jiang Z., Toro L. A calcium switch for the functional coupling between alpha (hslo) and beta subunits (KV,Ca beta) of maxi K channels. FEBS Lett. 1996 Mar 11;382(1-2):84–88. doi: 10.1016/0014-5793(96)00151-2. [DOI] [PubMed] [Google Scholar]
- Minami K., Fukuzawa K., Nakaya Y. Protein kinase C inhibits the Ca(2+)-activated K+ channel of cultured porcine coronary artery smooth muscle cells. Biochem Biophys Res Commun. 1993 Jan 15;190(1):263–269. doi: 10.1006/bbrc.1993.1040. [DOI] [PubMed] [Google Scholar]
- Moczydlowski E., Latorre R. Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions. J Gen Physiol. 1983 Oct;82(4):511–542. doi: 10.1085/jgp.82.4.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakayama K., Ishigai Y., Uchida H., Tanaka Y. Potentiation by endothelin-1 of 5-hydroxytryptamine-induced contraction in coronary artery of the pig. Br J Pharmacol. 1991 Dec;104(4):978–986. doi: 10.1111/j.1476-5381.1991.tb12536.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson M. T., Cheng H., Rubart M., Santana L. F., Bonev A. D., Knot H. J., Lederer W. J. Relaxation of arterial smooth muscle by calcium sparks. Science. 1995 Oct 27;270(5236):633–637. doi: 10.1126/science.270.5236.633. [DOI] [PubMed] [Google Scholar]
- Pérez G., Lagrutta A., Adelman J. P., Toro L. Reconstitution of expressed KCa channels from Xenopus oocytes to lipid bilayers. Biophys J. 1994 Apr;66(4):1022–1027. doi: 10.1016/S0006-3495(94)80883-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reinhart P. H., Chung S., Levitan I. B. A family of calcium-dependent potassium channels from rat brain. Neuron. 1989 Jan;2(1):1031–1041. doi: 10.1016/0896-6273(89)90227-4. [DOI] [PubMed] [Google Scholar]
- Scornik F. S., Codina J., Birnbaumer L., Toro L. Modulation of coronary smooth muscle KCa channels by Gs alpha independent of phosphorylation by protein kinase A. Am J Physiol. 1993 Oct;265(4 Pt 2):H1460–H1465. doi: 10.1152/ajpheart.1993.265.4.H1460. [DOI] [PubMed] [Google Scholar]
- Scornik F. S., Toro L. U46619, a thromboxane A2 agonist, inhibits KCa channel activity from pig coronary artery. Am J Physiol. 1992 Mar;262(3 Pt 1):C708–C713. doi: 10.1152/ajpcell.1992.262.3.C708. [DOI] [PubMed] [Google Scholar]
- Sigworth F. J., Sine S. M. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys J. 1987 Dec;52(6):1047–1054. doi: 10.1016/S0006-3495(87)83298-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silberberg S. D., Lagrutta A., Adelman J. P., Magleby K. L. Wanderlust kinetics and variable Ca(2+)-sensitivity of Drosophila, a large conductance Ca(2+)-activated K+ channel, expressed in oocytes. Biophys J. 1996 Jun;70(6):2640–2651. doi: 10.1016/S0006-3495(96)79833-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taniguchi J., Furukawa K. I., Shigekawa M. Maxi K+ channels are stimulated by cyclic guanosine monophosphate-dependent protein kinase in canine coronary artery smooth muscle cells. Pflugers Arch. 1993 May;423(3-4):167–172. doi: 10.1007/BF00374390. [DOI] [PubMed] [Google Scholar]
- Tseng-Crank J., Foster C. D., Krause J. D., Mertz R., Godinot N., DiChiara T. J., Reinhart P. H. Cloning, expression, and distribution of functionally distinct Ca(2+)-activated K+ channel isoforms from human brain. Neuron. 1994 Dec;13(6):1315–1330. doi: 10.1016/0896-6273(94)90418-9. [DOI] [PubMed] [Google Scholar]
- Wilde D. W., Lee K. S. Outward potassium currents in freshly isolated smooth muscle cell of dog coronary arteries. Circ Res. 1989 Dec;65(6):1718–1734. doi: 10.1161/01.res.65.6.1718. [DOI] [PubMed] [Google Scholar]

