Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Jul 15;502(Pt 2):281–292. doi: 10.1111/j.1469-7793.1997.281bk.x

Interactions between neuropeptide Y and the adenylate cyclase pathway in rat mesenteric small arteries: role of membrane potential.

D Prieto 1, C Buus 1, M J Mulvany 1, H Nilsson 1
PMCID: PMC1159549  PMID: 9263910

Abstract

1. Simultaneous measurements of membrane potential and tension were performed to investigate the intracellular mechanisms of neuropeptide Y (NPY) in rat mesenteric small arteries. 2. NPY (0.1 microM) depolarized arterial smooth muscle cells from -55 to -47 mV and increased wall tension by 0.22 N m-1, representing 11% of the contraction elicited by a high-potassium solution. Isoprenaline (1 microM) and acetylcholine (1 microM) evoked hyperpolarizations of 11 and 17 mV, respectively. NPY inhibited the isoprenaline-induced effects on membrane potential without affecting those of acetylcholine. 3. Forskolin evoked sustained concentration-dependent hyperpolarizations of small mesenteric arteries. NPY (0.1 microM) inhibited the responses to 1 microM forskolin, but did not alter the stable hyperpolarization elicited by the specific activator of protein kinase A (PKA) SP-5,6-DCl-cBIMPS (0.1 mM). Forskolin increased the cyclic AMP (cAMP) content of the arteries 21-fold, and NPY inhibited the forskolin-evoked increase in cAMP levels by 91%. 4. The hyperpolarization produced by 1 microM forskolin was not affected by either charybdotoxin (0.1 microM) or 4-aminopyridine (0.5 mM), but glibenclamide (5 microM) inhibited the hyperpolarization by 70%. Glibenclamide also inhibited the hyperpolarization evoked by SP-5,6-DCl-cBIMPS by 59%. 5. Neither depolarization nor contraction caused by NPY were significantly affected by either glibenclamide (5 microM) or nifedipine (1 microM), but they were reduced by gadolinium (10 microM). However, the blocking effect of NPY on forskolin-elicited hyperpolarization was not affected by gadolinium. 6. Charybdotoxin (0.1 microM) and 4-aminopyridine (0.5 mM) strongly enhanced the depolarization and contraction caused by NPY (0.1 microM), and nifedipine (1 microM) prevented the enhanced responses to NPY in the presence of charybdotoxin. 7. These findings suggest that NPY acts through at least two different intracellular mechanisms in mesenteric small arteries: a depolarization of arterial smooth muscle which is probably due to activation of non-selective cation channels, and a marked inhibition of adenylate cyclase activity, which in turn inhibits the hyperpolarization produced by cAMP accumulation in these arteries.

Full text

PDF
281

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel P. W., Han C. Effects of neuropeptide Y on contraction, relaxation, and membrane potential of rabbit cerebral arteries. J Cardiovasc Pharmacol. 1989 Jan;13(1):52–63. [PubMed] [Google Scholar]
  2. Aiello E. A., Walsh M. P., Cole W. C. Phosphorylation by protein kinase A enhances delayed rectifier K+ current in rabbit vascular smooth muscle cells. Am J Physiol. 1995 Feb;268(2 Pt 2):H926–H934. doi: 10.1152/ajpheart.1995.268.2.H926. [DOI] [PubMed] [Google Scholar]
  3. Andriantsitohaina R., Bian K., Stoclet J. C., Bukoski R. D. Neuropeptide Y increases force development through a mechanism that involves calcium entry in resistance arteries. J Vasc Res. 1993 Nov-Dec;30(6):309–314. doi: 10.1159/000159011. [DOI] [PubMed] [Google Scholar]
  4. Chen C., Wagoner P. K. Endothelin induces a nonselective cation current in vascular smooth muscle cells. Circ Res. 1991 Aug;69(2):447–454. doi: 10.1161/01.res.69.2.447. [DOI] [PubMed] [Google Scholar]
  5. Chen H., Fetscher C., Schäfers R. F., Wambach G., Philipp T., Michel M. C. Effects of noradrenaline and neuropeptide Y on rat mesenteric microvessel contraction. Naunyn Schmiedebergs Arch Pharmacol. 1996 Feb;353(3):314–323. doi: 10.1007/BF00168634. [DOI] [PubMed] [Google Scholar]
  6. Duckles S. P., Buxton I. L. Neuropeptide Y potentiates norepinephrine-stimulated inositol phosphate production in the rat tail artery. Life Sci. 1994;55(2):103–109. doi: 10.1016/0024-3205(94)90101-5. [DOI] [PubMed] [Google Scholar]
  7. Ekblad E., Edvinsson L., Wahlestedt C., Uddman R., Håkanson R., Sundler F. Neuropeptide Y co-exists and co-operates with noradrenaline in perivascular nerve fibers. Regul Pept. 1984 Apr;8(3):225–235. doi: 10.1016/0167-0115(84)90064-8. [DOI] [PubMed] [Google Scholar]
  8. Fredholm B. B., Jansen I., Edvinsson L. Neuropeptide Y is a potent inhibitor of cyclic AMP accumulation in feline cerebral blood vessels. Acta Physiol Scand. 1985 Jul;124(3):467–469. doi: 10.1111/j.1748-1716.1985.tb07683.x. [DOI] [PubMed] [Google Scholar]
  9. Isenberg G. Nonselective cation channels in cardiac and smooth muscle cells. EXS. 1993;66:247–260. doi: 10.1007/978-3-0348-7327-7_19. [DOI] [PubMed] [Google Scholar]
  10. Kassis S., Olasmaa M., Terenius L., Fishman P. H. Neuropeptide Y inhibits cardiac adenylate cyclase through a pertussis toxin-sensitive G protein. J Biol Chem. 1987 Mar 15;262(8):3429–3431. [PubMed] [Google Scholar]
  11. Kleppisch T., Nelson M. T. Adenosine activates ATP-sensitive potassium channels in arterial myocytes via A2 receptors and cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12441–12445. doi: 10.1073/pnas.92.26.12441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Larhammar D., Blomqvist A. G., Yee F., Jazin E., Yoo H., Wahlested C. Cloning and functional expression of a human neuropeptide Y/peptide YY receptor of the Y1 type. J Biol Chem. 1992 Jun 5;267(16):10935–10938. [PubMed] [Google Scholar]
  14. Lobaugh L. A., Blackshear P. J. Neuropeptide Y stimulation of myosin light chain phosphorylation in cultured aortic smooth muscle cells. J Biol Chem. 1990 Oct 25;265(30):18393–18399. [PubMed] [Google Scholar]
  15. McDermott B. J., Millar B. C., Piper H. M. Cardiovascular effects of neuropeptide Y: receptor interactions and cellular mechanisms. Cardiovasc Res. 1993 Jun;27(6):893–905. doi: 10.1093/cvr/27.6.893. [DOI] [PubMed] [Google Scholar]
  16. Mihara S., Shigeri Y., Fujimoto M. Neuropeptide Y-induced intracellular Ca2+ increases in vascular smooth muscle cells. FEBS Lett. 1989 Dec 18;259(1):79–82. doi: 10.1016/0014-5793(89)81499-1. [DOI] [PubMed] [Google Scholar]
  17. Minami K., Fukuzawa K., Nakaya Y., Zeng X. R., Inoue I. Mechanism of activation of the Ca(2+)-activated K+ channel by cyclic AMP in cultured porcine coronary artery smooth muscle cells. Life Sci. 1993;53(14):1129–1135. doi: 10.1016/0024-3205(93)90549-i. [DOI] [PubMed] [Google Scholar]
  18. Miyoshi Y., Nakaya Y., Wakatsuki T., Nakaya S., Fujino K., Saito K., Inoue I. Endothelin blocks ATP-sensitive K+ channels and depolarizes smooth muscle cells of porcine coronary artery. Circ Res. 1992 Mar;70(3):612–616. doi: 10.1161/01.res.70.3.612. [DOI] [PubMed] [Google Scholar]
  19. Mulvany M. J., Halpern W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res. 1977 Jul;41(1):19–26. doi: 10.1161/01.res.41.1.19. [DOI] [PubMed] [Google Scholar]
  20. Mulvany M. J., Nilsson H., Flatman J. A. Role of membrane potential in the response of rat small mesenteric arteries to exogenous noradrenaline stimulation. J Physiol. 1982 Nov;332:363–373. doi: 10.1113/jphysiol.1982.sp014418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Murray K. J. Cyclic AMP and mechanisms of vasodilation. Pharmacol Ther. 1990;47(3):329–345. doi: 10.1016/0163-7258(90)90060-f. [DOI] [PubMed] [Google Scholar]
  22. Nakashima M., Vanhoutte P. M. Isoproterenol causes hyperpolarization through opening of ATP-sensitive potassium channels in vascular smooth muscle of the canine saphenous vein. J Pharmacol Exp Ther. 1995 Jan;272(1):379–384. [PubMed] [Google Scholar]
  23. Neild T. O. Actions of neuropeptide Y on innervated and denervated rat tail arteries. J Physiol. 1987 May;386:19–30. doi: 10.1113/jphysiol.1987.sp016519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nelson M. T., Huang Y., Brayden J. E., Hescheler J., Standen N. B. Arterial dilations in response to calcitonin gene-related peptide involve activation of K+ channels. Nature. 1990 Apr 19;344(6268):770–773. doi: 10.1038/344770a0. [DOI] [PubMed] [Google Scholar]
  25. Nelson M. T., Quayle J. M. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol. 1995 Apr;268(4 Pt 1):C799–C822. doi: 10.1152/ajpcell.1995.268.4.C799. [DOI] [PubMed] [Google Scholar]
  26. Nilsson H., Jensen P. E., Mulvany M. J. Minor role for direct adrenoceptor-mediated calcium entry in rat mesenteric small arteries. J Vasc Res. 1994 Nov-Dec;31(6):314–321. doi: 10.1159/000159059. [DOI] [PubMed] [Google Scholar]
  27. Prieto D., Benedito S., Simonsen U., Nyborg N. C. Regional heterogeneity in the contractile and potentiating effects of neuropeptide Y in rat isolated coronary arteries: modulatory action of the endothelium. Br J Pharmacol. 1991 Mar;102(3):754–758. doi: 10.1111/j.1476-5381.1991.tb12245.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Prieto D., Simonsen U., Nyborg N. C. Regional involvement of an endothelium-derived contractile factor in the vasoactive actions of neuropeptide Y in bovine isolated retinal arteries. Br J Pharmacol. 1995 Nov;116(6):2729–2737. doi: 10.1111/j.1476-5381.1995.tb17234.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Quayle J. M., Bonev A. D., Brayden J. E., Nelson M. T. Calcitonin gene-related peptide activated ATP-sensitive K+ currents in rabbit arterial smooth muscle via protein kinase A. J Physiol. 1994 Feb 15;475(1):9–13. doi: 10.1113/jphysiol.1994.sp020045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Quayle J. M., Standen N. B. KATP channels in vascular smooth muscle. Cardiovasc Res. 1994 Jun;28(6):797–804. doi: 10.1093/cvr/28.6.797. [DOI] [PubMed] [Google Scholar]
  31. Sandberg M., Butt E., Nolte C., Fischer L., Halbrügge M., Beltman J., Jahnsen T., Genieser H. G., Jastorff B., Walter U. Characterization of Sp-5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole- 3',5'-monophosphorothioate (Sp-5,6-DCl-cBiMPS) as a potent and specific activator of cyclic-AMP-dependent protein kinase in cell extracts and intact cells. Biochem J. 1991 Oct 15;279(Pt 2):521–527. doi: 10.1042/bj2790521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Somlyo A. P., Somlyo A. V., Smiesko V. Cyclic AMP and vascular smooth muscle. Adv Cyclic Nucleotide Res. 1972;1:175–194. [PubMed] [Google Scholar]
  33. Standen N. B., Quayle J. M., Davies N. W., Brayden J. E., Huang Y., Nelson M. T. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science. 1989 Jul 14;245(4914):177–180. doi: 10.1126/science.2501869. [DOI] [PubMed] [Google Scholar]
  34. Van Renterghem C., Romey G., Lazdunski M. Vasopressin modulates the spontaneous electrical activity in aortic cells (line A7r5) by acting on three different types of ionic channels. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9365–9369. doi: 10.1073/pnas.85.23.9365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wahlestedt C., Reis D. J. Neuropeptide Y-related peptides and their receptors--are the receptors potential therapeutic drug targets? Annu Rev Pharmacol Toxicol. 1993;33:309–352. doi: 10.1146/annurev.pa.33.040193.001521. [DOI] [PubMed] [Google Scholar]
  36. Xia J., Neild T. O., Kotecha N. Effects of neuropeptide Y and agonists selective for neuropeptide Y receptor sub-types on arterioles of the guinea-pig small intestine and the rat brain. Br J Pharmacol. 1992 Nov;107(3):771–776. doi: 10.1111/j.1476-5381.1992.tb14522.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Xiong Z., Bolzon B. J., Cheung D. W. Neuropeptide Y potentiates calcium-channel currents in single vascular smooth muscle cells. Pflugers Arch. 1993 Jun;423(5-6):504–510. doi: 10.1007/BF00374948. [DOI] [PubMed] [Google Scholar]
  38. Xiong Z., Cheung D. W. Neuropeptide Y inhibits Ca(2+)-activated K+ channels in vascular smooth muscle cells from the rat tail artery. Pflugers Arch. 1994 Dec;429(2):280–284. doi: 10.1007/BF00374324. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES