Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Jul 15;502(Pt 2):307–319. doi: 10.1111/j.1469-7793.1997.307bk.x

Voltage-dependent binding and calcium channel current inhibition by an anti-alpha 1D subunit antibody in rat dorsal root ganglion neurones and guinea-pig myocytes.

C N Wyatt 1, V Campbell 1, J Brodbeck 1, N L Brice 1, K M Page 1, N S Berrow 1, K Brickley 1, C M Terracciano 1, R U Naqvi 1, K T MacLeod 1, A C Dolphin 1
PMCID: PMC1159551  PMID: 9263912

Abstract

1. The presence of calcium channel alpha 1D subunit mRNA in cultured rat dorsal root ganglion (DRG) neurones and guinea-pig cardiac myocytes was demonstrated using the reverse transcriptase-polymerase chain reaction. 2. An antipeptide antibody targeted at a region of the voltage-dependent calcium channel alpha 1D subunit C-terminal to the pore-forming SS1-SS2 loop in domain IV (amino acids 1417-1434) only bound to this exofacial epitope if the DRG neurones and cardiac myocytes were depolarized with 30 mM K+. 3. Incubation of cells under depolarizing conditions for 2-4 h with the antibody resulted in a maximal inhibition of inward current density of 49% (P < 0.005) for DRGs and 30% (P < 0.05) for cardiac myocytes when compared with controls. 4. S-(-)-Bay K 8644 (1 microM) enhanced calcium channel currents in DRGs by 75 +/- 19% (n = 5) in neurones incubated under depolarizing conditions with antibody that had been preabsorbed with its immunizing peptide (100 micrograms ml-1). This was significantly (P < 0.05) larger than the enhancement by S-(-)-Bay K 8644 that was seen with cells incubated under identical conditions but with antibody alone, which was 15 +/- 4% (n = 5). 5. These results demonstrate the presence of calcium channel alpha 1D subunits in rat DRG neurones and guinea-pig cardiac myocytes. They also show that amino acids 1417-1434 of the alpha 1D subunit are only exposed to the extracellular face of the membrane following depolarization and that the binding of an antibody to these amino acids attenuates calcium channel current and reduces the ability of S-(-)-Bay K 8644 to enhance this current, indicating that it is an L-type current that is attenuated.

Full text

PDF
307

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnbaumer L., Campbell K. P., Catterall W. A., Harpold M. M., Hofmann F., Horne W. A., Mori Y., Schwartz A., Snutch T. P., Tanabe T. The naming of voltage-gated calcium channels. Neuron. 1994 Sep;13(3):505–506. doi: 10.1016/0896-6273(94)90021-3. [DOI] [PubMed] [Google Scholar]
  2. Brice N. L., Berrow N. S., Campbell V., Page K. M., Brickley K., Tedder I., Dolphin A. C. Importance of the different beta subunits in the membrane expression of the alpha1A and alpha2 calcium channel subunits: studies using a depolarization-sensitive alpha1A antibody. Eur J Neurosci. 1997 Apr;9(4):749–759. doi: 10.1111/j.1460-9568.1997.tb01423.x. [DOI] [PubMed] [Google Scholar]
  3. Brickley K., Campbell V., Berrow N., Leach R., Norman R. I., Wray D., Dolphin A. C., Baldwin S. A. Use of site-directed antibodies to probe the topography of the alpha 2 subunit of voltage-gated Ca2+ channels. FEBS Lett. 1995 May 8;364(2):129–133. doi: 10.1016/0014-5793(95)00371-f. [DOI] [PubMed] [Google Scholar]
  4. Campbell V., Berrow N., Brickley K., Page K., Wade R., Dolphin A. C. Voltage-dependent calcium channel beta-subunits in combination with alpha 1 subunits, have a GTPase activating effect to promote the hydrolysis of GTP by G alpha o in rat frontal cortex. FEBS Lett. 1995 Aug 14;370(1-2):135–140. doi: 10.1016/0014-5793(95)00813-o. [DOI] [PubMed] [Google Scholar]
  5. Catterall W. A., Striessnig J. Receptor sites for Ca2+ channel antagonists. Trends Pharmacol Sci. 1992 Jun;13(6):256–262. doi: 10.1016/0165-6147(92)90079-l. [DOI] [PubMed] [Google Scholar]
  6. Chin H., Smith M. A., Kim H. L., Kim H. Expression of dihydropyridine-sensitive brain calcium channels in the rat central nervous system. FEBS Lett. 1992 Mar 24;299(1):69–74. doi: 10.1016/0014-5793(92)80103-n. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Dolphin A. C. The G.L. Brown Prize Lecture. Voltage-dependent calcium channels and their modulation by neurotransmitters and G proteins. Exp Physiol. 1995 Jan;80(1):1–36. doi: 10.1113/expphysiol.1995.sp003825. [DOI] [PubMed] [Google Scholar]
  9. García K. D., Mynlieff M., Sanders D. B., Beam K. G., Walrond J. P. Lambert-Eaton sera reduce low-voltage and high-voltage activated Ca2+ currents in murine dorsal root ganglion neurons. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9264–9269. doi: 10.1073/pnas.93.17.9264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grabner M., Wang Z., Hering S., Striessnig J., Glossmann H. Transfer of 1,4-dihydropyridine sensitivity from L-type to class A (BI) calcium channels. Neuron. 1996 Jan;16(1):207–218. doi: 10.1016/s0896-6273(00)80037-9. [DOI] [PubMed] [Google Scholar]
  11. Grassi C., Magnelli V., Carabelli V., Sher E., Carbone E. Inhibition of low- and high-threshold Ca2+ channels of human neuroblastoma IMR32 cells by Lambert-Eaton myasthenic syndrome (LEMS) IgGs. Neurosci Lett. 1994 Nov 7;181(1-2):50–56. doi: 10.1016/0304-3940(94)90558-4. [DOI] [PubMed] [Google Scholar]
  12. Guy H. R., Conti F. Pursuing the structure and function of voltage-gated channels. Trends Neurosci. 1990 Jun;13(6):201–206. doi: 10.1016/0166-2236(90)90160-c. [DOI] [PubMed] [Google Scholar]
  13. Hamilton S. L., Yatani A., Brush K., Schwartz A., Brown A. M. A comparison between the binding and electrophysiological effects of dihydropyridines on cardiac membranes. Mol Pharmacol. 1987 Mar;31(3):221–231. [PubMed] [Google Scholar]
  14. Hell J. W., Westenbroek R. E., Warner C., Ahlijanian M. K., Prystay W., Gilbert M. M., Snutch T. P., Catterall W. A. Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits. J Cell Biol. 1993 Nov;123(4):949–962. doi: 10.1083/jcb.123.4.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holz G. G., 4th, Kream R. M., Spiegel A., Dunlap K. G proteins couple alpha-adrenergic and GABAb receptors to inhibition of peptide secretion from peripheral sensory neurons. J Neurosci. 1989 Feb;9(2):657–666. doi: 10.1523/JNEUROSCI.09-02-00657.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hui A., Ellinor P. T., Krizanova O., Wang J. J., Diebold R. J., Schwartz A. Molecular cloning of multiple subtypes of a novel rat brain isoform of the alpha 1 subunit of the voltage-dependent calcium channel. Neuron. 1991 Jul;7(1):35–44. doi: 10.1016/0896-6273(91)90072-8. [DOI] [PubMed] [Google Scholar]
  17. Kass R. S., Arena J. P., Chin S. Block of L-type calcium channels by charged dihydropyridines. Sensitivity to side of application and calcium. J Gen Physiol. 1991 Jul;98(1):63–75. doi: 10.1085/jgp.98.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kim H. L., Kim H., Lee P., King R. G., Chin H. Rat brain expresses an alternatively spliced form of the dihydropyridine-sensitive L-type calcium channel alpha 2 subunit. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3251–3255. doi: 10.1073/pnas.89.8.3251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kim Y. I., Neher E. IgG from patients with Lambert-Eaton syndrome blocks voltage-dependent calcium channels. Science. 1988 Jan 22;239(4838):405–408. doi: 10.1126/science.2447652. [DOI] [PubMed] [Google Scholar]
  20. Mikami A., Imoto K., Tanabe T., Niidome T., Mori Y., Takeshima H., Narumiya S., Numa S. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature. 1989 Jul 20;340(6230):230–233. doi: 10.1038/340230a0. [DOI] [PubMed] [Google Scholar]
  21. Mitterdorfer J., Sinnegger M. J., Grabner M., Striessnig J., Glossmann H. Coordination of Ca2+ by the pore region glutamates is essential for high-affinity dihydropyridine binding to the cardiac Ca2+ channel alpha 1 subunit. Biochemistry. 1995 Jul 25;34(29):9350–9355. doi: 10.1021/bi00029a010. [DOI] [PubMed] [Google Scholar]
  22. Mori Y., Friedrich T., Kim M. S., Mikami A., Nakai J., Ruth P., Bosse E., Hofmann F., Flockerzi V., Furuichi T. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature. 1991 Apr 4;350(6317):398–402. doi: 10.1038/350398a0. [DOI] [PubMed] [Google Scholar]
  23. Nakayama H., Taki M., Striessnig J., Glossmann H., Catterall W. A., Kanaoka Y. Identification of 1,4-dihydropyridine binding regions within the alpha 1 subunit of skeletal muscle Ca2+ channels by photoaffinity labeling with diazipine. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9203–9207. doi: 10.1073/pnas.88.20.9203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peers C., Lang B., Newsom-Davis J., Wray D. W. Selective action of myasthenic syndrome antibodies on calcium channels in a rodent neuroblastoma x glioma cell line. J Physiol. 1990 Feb;421:293–308. doi: 10.1113/jphysiol.1990.sp017945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pragnell M., Sakamoto J., Jay S. D., Campbell K. P. Cloning and tissue-specific expression of the brain calcium channel beta-subunit. FEBS Lett. 1991 Oct 21;291(2):253–258. doi: 10.1016/0014-5793(91)81296-k. [DOI] [PubMed] [Google Scholar]
  26. Regulla S., Schneider T., Nastainczyk W., Meyer H. E., Hofmann F. Identification of the site of interaction of the dihydropyridine channel blockers nitrendipine and azidopine with the calcium-channel alpha 1 subunit. EMBO J. 1991 Jan;10(1):45–49. doi: 10.1002/j.1460-2075.1991.tb07919.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sadighi Akha A. A., Willmott N. J., Brickley K., Dolphin A. C., Galione A., Hunt S. V. Anti-Ig-induced calcium influx in rat B lymphocytes mediated by cGMP through a dihydropyridine-sensitive channel. J Biol Chem. 1996 Mar 29;271(13):7297–7300. doi: 10.1074/jbc.271.13.7297. [DOI] [PubMed] [Google Scholar]
  28. Schuster A., Lacinová L., Klugbauer N., Ito H., Birnbaumer L., Hofmann F. The IVS6 segment of the L-type calcium channel is critical for the action of dihydropyridines and phenylalkylamines. EMBO J. 1996 May 15;15(10):2365–2370. [PMC free article] [PubMed] [Google Scholar]
  29. Snutch T. P., Tomlinson W. J., Leonard J. P., Gilbert M. M. Distinct calcium channels are generated by alternative splicing and are differentially expressed in the mammalian CNS. Neuron. 1991 Jul;7(1):45–57. doi: 10.1016/0896-6273(91)90073-9. [DOI] [PubMed] [Google Scholar]
  30. Striessnig J., Murphy B. J., Catterall W. A. Dihydropyridine receptor of L-type Ca2+ channels: identification of binding domains for [3H](+)-PN200-110 and [3H]azidopine within the alpha 1 subunit. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10769–10773. doi: 10.1073/pnas.88.23.10769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Strübing C., Hering S., Glossmann H. Evidence for an external location of the dihydropyridine agonist receptor site on smooth muscle and skeletal muscle calcium channels. Br J Pharmacol. 1993 Apr;108(4):884–891. doi: 10.1111/j.1476-5381.1993.tb13482.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tang S., Mikala G., Bahinski A., Yatani A., Varadi G., Schwartz A. Molecular localization of ion selectivity sites within the pore of a human L-type cardiac calcium channel. J Biol Chem. 1993 Jun 25;268(18):13026–13029. [PubMed] [Google Scholar]
  33. Tang S., Yatani A., Bahinski A., Mori Y., Schwartz A. Molecular localization of regions in the L-type calcium channel critical for dihydropyridine action. Neuron. 1993 Dec;11(6):1013–1021. doi: 10.1016/0896-6273(93)90215-d. [DOI] [PubMed] [Google Scholar]
  34. Varadi G., Mori Y., Mikala G., Schwartz A. Molecular determinants of Ca2+ channel function and drug action. Trends Pharmacol Sci. 1995 Feb;16(2):43–49. doi: 10.1016/s0165-6147(00)88977-4. [DOI] [PubMed] [Google Scholar]
  35. Wang Z., Grabner M., Berjukow S., Savchenko A., Glossmann H., Hering S. Chimeric L-type Ca2+ channels expressed in Xenopus laevis oocytes reveal role of repeats III and IV in activation gating. J Physiol. 1995 Jul 1;486(Pt 1):131–137. doi: 10.1113/jphysiol.1995.sp020797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yang J., Ellinor P. T., Sather W. A., Zhang J. F., Tsien R. W. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature. 1993 Nov 11;366(6451):158–161. doi: 10.1038/366158a0. [DOI] [PubMed] [Google Scholar]
  37. Yang N., George A. L., Jr, Horn R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron. 1996 Jan;16(1):113–122. doi: 10.1016/s0896-6273(00)80028-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES