Skip to main content
Molecules logoLink to Molecules
. 2024 Nov 20;29(22):5483. doi: 10.3390/molecules29225483

Research Progress on Sesquiterpenes from the Genus Ainsliaea

Hui Zhang 1,, Ru-Ru Sun 1,, Ya-Feng Liu 1,2,3, Xin Guo 1,2,3, Chong-Long Li 1,2,3, Ze-Dong Nan 1,2,3,*, Zhi-Bo Jiang 1,2,3,*
Editor: Julio A Seijas Vázquez
PMCID: PMC11597153  PMID: 39598872

Abstract

Sesquiterpenes constitute the principal components of the genus Ainsliaea, encompassing guaiane, germacrane, eudesmane, and polymer sesquiterpene lactones types. These secondary metabolites exhibit diverse pharmacological activities, including antitumor, antibacterial, anti-inflammatory, antiviral, antioxidant, hepatoprotective, and neuroprotective effects. Through a comprehensive literature search of the Web of Science, PubMed, SciFinder, and CNKI databases, it was discovered that there are as many as 145 main sesquiterpenoids in the genus Ainsliaea. However, the nuclear magnetic resonance (NMR) data for the sesquiterpenes in this genus have not been systematically compiled and summarized. Therefore, this review aims to highlight the chemical structures, NMR data, and pharmacological activities of sesquiterpenes in Ainsliaea. By meticulously analyzing published scholarly literature, our goal is to provide a solid foundation for further exploration of new sesquiterpenes and extensive utilization of this genus.

Keywords: Ainsliaea, sesquiterpenes, nuclear magnetic resonance (NMR), structure analysis

1. Introduction

Ainsliaea is a perennial herb, with over seventy species mainly distributed in southeast Asia. In China, there are forty-four species and four varieties. The majority of these plants are found around the Yangtze River Basin, with only one species distributed in the northeast. They are typically harvested in summer and autumn, and the entire plants are used for Chinese medicinal purposes [1]. According to the ‘Supplements to the Compendium of Materia Medica’, it is documented that Ainsliaea has a sweet and mild taste, cold properties, and belongs to the lung, spleen, and large-intestine meridians. The ‘Comprehensive Dictionary of Chinese Herbal Medicine’ states that Ainsliaea has the functions of clearing heat, promoting diuresis, cooling blood, and detoxification. Ainsliaea fragrans Champ. Is the primary ingredient in the national protected Chinese medicine ‘Xingxiang Tu’erfeng’ herbal granules and herbal tablets.

Since the 1980s, several studies have been conducted on the chemical composition and pharmacological activities of the genus Ainsliaea, leading to the discovery of over 400 compounds. The chemical constituents of this genus mainly include sesquiterpenoids, triterpenoids, steroids and their derivatives, phenolic acids, flavonoids, anthraquinones, coumarins, lignans, essential oils, and other components. Chemical studies have revealed that sesquiterpenes are the characteristic components of Ainsliaea plants [2,3]. The investigation has shown that sesquiterpenes in Ainsliaea plants mainly consist of guaiane, germacrane, eudesmane, polymer sesquiterpene lactones, and others [4]. However, NMR spectroscopy data for these sesquiterpenes derivatives have not been reported. This paper aims to provide references for the analysis and identification of new structural compounds by summarizing the 1H- and/or 13C-NMR data of 145 sesquiterpenes from the genus Ainsliaea between 1979 and 2022 through consulting the relevant literature.

2. Guaiane-Type Sesquiterpene

Guaiane sesquiterpenes are a class of compounds with three isoprene units consisting of 5,7 fused rings, which are substituted by 4,10-dimethyl-7-isopropyl moieties as the basic nucleus. These compounds possess antibacterial, anti-inflammatory, antitumor, neuroprotective, and other biological activities [5]. Thus far, a total of 63 guaiane sesquiterpenes have been reported in this genus, mainly 12,6 guaiacan-type sesquiterpene lactones. The structures and detailed information are listed in Figure 1 and Table 1.

Figure 1.

Figure 1

Figure 1

Chemical structures for compounds 163.

Table 1.

The compound name, molecular formula, and NMR test reagent of guaiane-type sesquiterpene.

No. Compound Name Molecular Formula Solvent Ref.
1 Epi-guaidiol A C15H26O2 CD3OD [6]
2 Ainslide A C15H22O3 CDCl3 [7]
3 Spicatene B C20H34O4 CDCl3 [8]
4 4β,10α-Dimethyl-1β,5α-bicycle[3,5,0]dec-6-en-4α,10β-diol C12H20O2 CDCl3 [9]
5 Aphanamol I C15H24O2 CDCl3 [10]
6 Aphanamol II C15H24O2 CDCl3 [10]
7 Yunnanol A C17H28O3 CDCl3 [11]
8 Ainslide E C15H22O3 CDCl3 [7]
9 4(15),10(14)-Guaiadien-12, 6-olide
mokkolactone
C15H20O2 CDCl3 [12]
10 4-Hydroxy-10(14),11(13)-guaiadien-6,12-olide C15H20O3 CDCl3 [13]
11 Dehydrocostuslactone C15H18O2 CDCl3 [14]
12 Ainslide F C15H22O3 CDCl3 [7]
13 Dihydroestafiatol C15H22O3 CDCl3 [15]
14 4β,15,11β,13-Tetrahydrozaluzanin C C16H22O2 CDCl3 [16]
15 Isolipidiol C15H22O4 CD3OD [17,18]
16 11α,13-Dihydrozaluzanin C C15H20O3 CDCl3 [19]
17 11β,13-Dihydrozaluzanin C C15H20O3 CDCl3 [15]
18 11β,13-Dihydro-3-epizaluzanin C C15H20O3 CDCl3 [20]
19 8β-Hydroxy-4β, 15-dihydrozaluzanin C C15H20O4 CDCl3 [21]
20 8α-Hydroxy-11α, 13-dihydrozaluzanin C C15H20O4 CDCl3 [22]
21 11β,13-Dihydrodesacylynaropicrin C15H20O4 CDCl3 [18,23]
22 l0α-Hydroxy-10(14),11β(13)-tetrahydroxaluzanin C C15H22O4 CDCl3 [24]
23 Zaluzanin C C15H18O3 CDCl3 [25]
24 Desacylcynaropicrin C15H18O4 CDCl3
CD3OD/CDCl3
[18,26]
25 8-Epidesacylcinaropicrin C15H18O4 C5D5N [27]
26 Isoamberboin C15H20O4 CDCl3 [28]
27 Ainslide D C16H22O4 CDCl3 [7]
28 Estafiatone C15H18O3 CDCl3 [29]
29 8-Epigrosheimin C15H18O4 CDCl3 [30]
30 Ainsliaolide B C17H22O4 CDCl3 [31]
31 Dehydrozaluzanin C C15H16O3 CDCl3 [32]
32 Diaspanolide A C20H28O4 CDCl3 [33]
33 Diaspanolide E C20H28O4 CDCl3 [34]
34 Ainsliaolide A C24H26O4 CDCl3 [35]
35 Ainsliaolide D C20H26O4 CDCl3 [36]
36 8α-Hydroxy-diaspanolide A C20H28O5 CDCl3 [8]
37 Yunnanolides H C20H28O5 CDCl3 [37]
38 Yunnanolides I C20H28O4 CDCl3 [37]
39 Diaspanolide B C20H26O4 CDCl3 [33]
40 lα-Hydroxy-3-O-isobutyrate C20H26O5 CDCl3 [38]
41 Ainslide C C20H24O5 CDCl3 [7]
42 Yunnanolide J C20H28O6 CDCl3 [11]
43 Spicatene A C20H26O5 CDCl3 [8]
44 Yunnanolides A C22H32O6 CDCl3 [37]
45 Yunnanolides C C22H32O6 CDCl3 [37]
46 Yunnanolides D C22H32O6 CDCl3 [37]
47 Yunnanolides E C22H32O5 CDCl3 [37]
48 Yunnanolides F C22H32O5 CDCl3 [37]
49 Yunnanolides B C22H32O6 CDCl3 [37]
50 Pertyolide C C22H30O6 CDCl3 [39]
51 Yunnanolides G C24H33NO5 CDCl3 [37]
52 11α, 13-Dihydroglucozaluzanin C C21H30O8 CD3OD/C5D5N [22]
53 8α-Hydroxy-11α, 13-dihydroglucozaluzanin C C21H30O9 CD3OD [22]
54 13-Ethoxy-4(15),10(14)-dien-guai-6,12-olide-3-O-β-D-glucopyranoside C23H35O9 CD3OD [40]
55 11β,13-Dihydro-8α-hydroxyglucozaluzanin C C21H30O9 C5D5N [41]
56 4β,15-Dihydrozaluzanin C C21H30O8 DMSO [42]
57 Glucozaluzanin C C21H28O8 CDCl3/C5D5N/
CD3SOCD3
[12,22]
58 Ainsliaside C C30H34O10 CD3OD [43]
59 Ainsliaside A C30H34O11 C5D5N [44]
60 2′-O-E-Caffeoyl-8α-hydroxy-11α,13-dihydro-3-β-O-β-D-glucozaluzanin C C30H36O12 CD3OD [45]
61 Macrocliniside B C27H38O13 DMSO
CD3OD
[25,46]
62 Macrocliniside I C33H48O18 DMSO [25,46]
63 ZaluzaninC-3-O-β-glucopyranosyl-(1→3)-β-glucopyranosyl-(1→3)-β-glucopyranosyl-(1→3)-β-glucopyranoside C39H58O23 DMSO [46]

2.1. NMR Data of Guaiane Sesquiterpenes (163)

The 1H and 13C NMR spectroscopy results were summarized in Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10 and Table 11. Additionally, this paper provides a summary of the nuclear magnetic data testing instrument used for compounds 163. NMR data for compounds 2, 8, 12, 27, and 41 were obtained with Bruker AV-400 HD spectrometers (Bruker, Byersbin, Switzerland). The 1H and 13C data of compounds 3, 7, 3638, 4249, and 51 were obtained by a Bruker Ascend-500 spectrometer (Bruker, Nasdaq, New York, NY, USA). For compounds 11, 25, 55, and 59, the NMR data were recorded on a JEOL FX-90Q spectrometer (JEOL, Tokyo, Japan). Compounds 20, 52, 53, and 57 had their 1H and 13C data taken with a Varian Mercury Plus 400 instrument (Varian, Palo Alto, CA, USA). Compounds 23, 61, and 62 were measured by a Varian Inova 400 instrument (Varian, Palo Alto, CA, USA). The 1H and 13C data of compounds 61, 62, and 63 were recorded using a unity Bruker AV500 instrument (Bruker, Switzerland). NMR data of compounds 9 and 57 were obtained using the Bruker AMX 500 (Bruker, Zurich, Switzerland) and Varian Unity Inova 500 instruments (Varian, USA). The 1H and 13C data of compounds 30 and 35 were run on a Bruker Avance 600 spectrometer (Bruker, Germany). The 1H- and 13C-NMR data of compounds 32 and 39 were collected by a Bruker DRX-500 spectrometer (Bruker, Switzerland). Nuclear magnetic data of compounds 1, 4, 14, 15, 16, 18, 28, 31, 33, 54, 56, 58, and 60 were recorded on the following instruments: VNS-600 (Varian, Palo Alto, CA, USA), Bruker ACF-500 NMR (Bruker, Germany), Bruker Avance DRX 500, Bruker Avance II 800 (Bruker, Switzerland), Bruker ARX-300 NMR (Bruker, Switzerland), Bruker Avance 400 (Bruker, Zug, Switzerland), Varian Inova 500 (Varian, Palo Alto, CA, USA), Bruker AC 200 (Bruker, Karlsruhe, Germany), Bruker Advance 500 (Bruker, Germany), Bruker AV-600 (Bruker, Switzerland), Varian 500 MHz (Varian, Palo Alto, CA, USA), and Bruker AV500-III (Bruker, Switzerland), Varian VNS600 (Varian, USA), Bruker Avance 300 (Bruker, Switzerland), and Bruker Avance 500 (Bruker, Switzerland). The 1H and 13C spectrums of compounds 56 were tested at 360 and 25 MHz, respectively; 10, 24, and 40 were run at 400MHz; 13 and 17 were recorded at 200 MHz for 1H and 50 MHz for 13C NMR; The 1H-NMR spectra of 19 and 29 were measured on 500.13 MHz; 21 and 26 were tested in the 270 MHz; 22 was taken with 300 MHz; 34 and 50 were collected in the 500 MHz. The carbon spectrum of compound 24 was determined at 100 MHz, compound 19 was recorded at 125.76 MHz, and compound 34 was recorded at 125 MHz. Carbon spectrum data for compounds 10, 21, 22, 26, 40, and 50 have not been reported in the literature.

Table 2.

1H-NMR data of compounds 18.

NO. 1 [6] 2 [7] 3 [8] 4 [9] 5 [10] 6 [10] 7 [11] 8 [7]
CD3OD CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3
1 2.54, ddd, 10.8, 8.4, 8.4 2.74, q, 9.3 2.05, m 2.30, q, 7.6
2α 1.81–1.85, m 1.94–2.02, m 1.95, m 1.76, dd, 11.7, 6.4 2.08 1.63, m 1.78–1.87, m
2β 1.51–1.54, m 1.59–1.70, m 1.49, m 1.66, dd, 11.7, 7.3 1.35 1.42, m 1.90–1.98, m
3α 1.67, br d, 10.4 2.47–2.60, m 1.69, m 1.70, dd, 7.3, 6.4 1.8 1.43, m 2.38–2.48, m
3β 1.66, dd, 10.4, 3.6 1.86–1.97, m 1.35
4 2.99–3.08, m 1.66 1.63, m
5 2.00, ddd, 13.2, 10.8, 3.6 2.07, td, 12.1, 2.4 2.03, m 2.24, dd, 11.5, 2.5 2.27 2.03, m 2.76, t, 8.9
6α 1.60, dd, 13.2, 3.6 1.76–1.85, m 1.78, m 5.74, br d, 11.0 5.51 6.62, d, 5 5.44, d, 4.5 4.08, t, 9.9
6β 1.35, ddd, 13.2, 13.2, 10.8 1.25–1.37, m 1.64, m
7α 1.86–1.97, m 2.14, m 5.80, ddd, 11.0, 5.3, 2.4 2.03–2.09, m
7β 2.12, ddd, 10.8, 10.8, 4.2 1.15–1.27, m
8α 1.72, ddd, 13.8, 7.2, 4.2, 3.6 1.72, m 1.98, m 2.54 2.17, m 1.99–2.07, m
8β 1.49, dddd, 13.8, 13.8 10.8, 4.2 2.13–2.22, m 1.86, m 2.30, m 2.29 1.30–1.39, m
9α 1.89, ddd, 13.8, 7.2, 4.2 4.77–4.81, m 1.66, m 1.61, ddd, 14.0, 9.5, 1.8 2.81 1.76, m 1.87–1.94, m
9β 1.61, ddd, 13.8, 13.8, 3.6 1.78, m 1.83, ddd, 14.0, 9.5, 2.0 2.41 1.58–1.67, m
10α 2.47–2.57, m 3.40, dd, 11, 6 3.44, dd, 10.5, 6.0
10β 1.95, d, 13.1
11 1.19, s 1.57 1.54, m 2.17–2.25, m
12α 4.65, br s 4.79–4.84, m 5.03, br s 1.26, s 0.9 0.92, d, 7 0.89, d, 7.0
12β 4.58, br s 5.01, br s
13 1.70, s 1.68, s 4.56, s 0.92 0.93, d, 7 0.89, d, 7.0 1.23, d, 6.9
14α 1.13, s 3.62, dd, 10.7, 4.5 1.30, s 4.01 9.37, s 4.49, m 1.13, s
14β 3.38, dd, 10.7, 7.6
15α 1.20, s 1.25, s 1.27 1.04, s 0.97, s 5.11, s
15β 4.95, s
2′ 2.22, m 2.07, s
3′ 2.11, m
4′ 0.97, d, 6.6
5′ 0.97, d, 6.6

Table 3.

1H-NMR data of compounds 917.

NO. 9 [12] 10 [13] 11 [14] 12 [7] 13 [15] 14 [16] 15 [17] 16 [19] 17 [15]
CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 C5D5N CDCl3 CDCl3
1 2.89, dt, 8.0, 4.5 3.02, br ddd, 12.5, 8, 8 2.69–2.76, m 2.76, m 2.79, m 2.83, m
2α 1.95, m 1.82, m 1.92–2.06, m 1.75, m 2.02, m 2.34, m
2β 1.87, m 2.15, m 2.24, m
3α 2.49, m 1.82, m 4.21–4.28, m 3.71, m 3.72, q, 6.4 3.91, m 4.54, t, 6.0 4.54, t, 7.4
3β 1.92, m
4 2.31–2.39, m 1.85, m 2.14, m
5 2.81, br dd, 9.5, 8.0 2.38, dd 2.22–2.31, m 1.75, m 1.98, m
6 3.93, t, 9.5 4.06, dd 3.98, t, 9 4.23, t, 9.7 3.93, t, 10 3.93, t, 9.7 3.93, m 4.13, t, 9.0 4.02, t, 9.5
7 2.12, m 2.77, ddddd 2.26–2.33, m 1.85, m 2.18, ddd, 10.4, 10.0, 9.6
8α 1.94, m 2.26, dddd 1.83–1.91, m 2.10, m 1.41, m
8β 1.32, m 1.38, dddd 1.33–1.42, m 1.23, m 3.83, m
9α 2.22, dd, 12.0, 7.0 2.69, ddd 2.62–2.68, m 2.60, dt, 13.0, 4.0 2.35, dd, 12.8, 11.8
9β 2.05, dt, 12.0, 5.0 1.94, br ddd 1.78–1.88, m 1.85, m 3.00, dd, 12.8, 4.8
11 2.49, m 2.66–2.71, m 2.12, m 2.20, m 2.77, m 2.14, qd, 11, 6.9
13α 1.25, d, 7.0 6.24, d 6.25, d, 3.5 1.18, d, 7.8 1.21, d, 6.8 1.29, d, 7.0 1.68, d, 7.2 1.16, d, 6.0 1.23, d, 6.9
13β 5.53, d 5.51, d, 3.2
14α 4.89, br s 5.01, br s 4.91, s 5.00, s 4.95, s 4.92, s 4.99, br s 4.95, s 4.96, s
14β 4.79, br s 4.97 br s 4.84, s 4.95, s 5.09, br s 4.93, s 4.93, s
15α 5.21, d, 2.0 1.32, s 5.29, br s 0.97, d, 7.2 1.24, d, 6.3 1.20, d, 7.3 1.44, d, 6.4 5.40, s 5.38, t, 1.9
15β 5.06, d, 2.0 5.09, br s 5.31, s 5.29, t, 1.9

Table 4.

1H-NMR data of compounds 1825.

NO. 18 [20] 19 [21] 20 [22] 21 [23] 22 [24] 23 [25] 24 [26] 25 [27]
CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CD3OD C5D5N
1 2.83, br ddd, 11.1, 10.6, 6.6 2.91, m 2.92, m 1.9–2.2, m 2.98, ddd, 10.6, 9.0, 7.1
2α 2.21, ddd, 13.0, 6.6, 6.6 1.71, m 2.25, m 1.9–2.2, m 1.73, ddd, 12.6, 11.0, 9.0
2β 1.79, ddd, 13.0, 10.6, 8.8 2.29, m 1.77, m 2.32, ddd, 14, 8, 8 2.11, ddd, 12.6, 7.2, 7.0
3 4.53, t, 7.6 3.75, ddd, 8.8, 8.8, 6.6 4.52, m 4.55, br d, 8 4.53, br t, 8, 1.9 4.53, m 4.50, br dd, 9.1, 7.5
4 1.90, m
5 1.93, m 2.88, m 2.85, m 2.72, br t, 9, 1.9 2.88, m
6 4.12, dd, 10.0, 9.2 4.27, dd, 9.7, 9.7 4.12, dd, 9.9, 9.9 4.07, t, 10 4.25, t, 9.9 4.06, t, 9.2 4.17, dd, 10.4, 8.9
7 2.80, m 2.35, m 2.00, q, 10 1.9–2.2, m 2.89, m
8α 4.34, br m 1.4–1.8, m
8β 3.78, m 3.78, t, 9, 4.5 3.90, ddd, 9.5, 5.0, 4.8
9α 2.37, dd, 13.5, 3.4 2.10, m 2.72, dd, 14, 5 1.4–1.8, m 2.70, dd, 13.6, 5.1
9β 2.69, dd, 13.5, 4.9 2.72, dd, 12.5, 4.5 2.21, dd, 14, 7 2.27, dd, 13.6, 4.6
11 2.87, m 2.58, m 2.25, dq, 12, 6.8
13α 1.14, d, 8.0 6.37, d, 3.6 1.29, d, 7.7 1.42, d, 3p, 7 1.22, d, 6.8 6.16, d, 3.2 6.15, dd, 3.2, 1.3 6.49, d, 3.5
13β 5.61, d, 3.2 5.46, d, 3.2 6.12, dd, 3.5, 1.3 5.68, overlapped
14α 4.94, s 5.16, br s 5.08, br s 5.11, br 1.17, s 4.95, br s 5.08, d, 1.7 5.70, s
14β 4.91, s 5.03, br s 5.01, br s 5.00, br 4.90, br s 4.97, d, 2.0
15α 5.38, s 1.22, d, 6.3 5.42, dd, 1.7, 1.6 5.41, t, 1 5.24, t, 1.9 5.42, br s 5.37, d, 2.3 5.68, overlapped
15β 5.30, s 5.32, dd, 1.7, 1.6 5.32, t, 1 5.20, t, 1.9 5.29, br s 5.30, d, 2.1 5.25, br s

Table 5.

1H-NMR data of compounds 2633.

NO. 26 [28] 27 [7] 28 [29] 29 [30] 30 [31] 31 [32] 32 [33] 33 [34]
CDCl3 CDCl3 CD3OD CDCl3 CDCl3 CDCl3 CDCl3 CDCl3
1 3.12, m 3.08, td, 8.5, 3.1 3.10, td, 8.5, 2.0 3.05, ddd, 8.4, 8.0, 3.1 3.10, t, 9.0 3.12, ddd 2.89, m 2.89–2.94, m
2α 2.25, c 2.50–2.55, m 2.16, t, 8.5 2.60, dd, 19.3, 8.4 2.48, d, 16.8 2.68, dd 2.46, m 1.98–2.03, m
2β 2.25, c 2.41–2.50, m 2.54, ddd, 19.3, 3.1, 1.4 2.55, dd, 16.8, 9.0 2.56, dd 1.74–1.80, m
3 5.54, m 5.56, dd, 6.3, 2.1
4 2.31–2.38, m 2.30, d, 7.5 2.33, ddq, 10.3, 6.9, 1.4 2.30, m
5 2.5, c 2.78–2.85, m 2.31, m 2.28, ddd, 10.3, 9.2, 8.0 2.91, q, 9.0 3.27, tdd 2.83, m 2.81–2.86, m
6 3.93, t, 9 4.06, t, 9.6 4.40, 8.8 4.55, dd, 9.2, 9.2 3.98, t, 9.0 4.01, t 4.08, t, 9.8 4.10, t, 9.7
7 2.05, q, 10 2.53–2.61, m 3.00, dddd, 8.0, 8.0, 3.0, 3.0 3.16, dddd, 9.2, 3.5, 3.0, 2.0 3.01, m 3.03, m 2.67, m 2.37–2.42, m
8α 1.93–2.02, m 2.35, m 4.46, br m 1.47, m 3.03, m 1.87–1.94, m
8β 1.38–1.49, m 1.48, m 2.33, m 1.46, m 1.37–1.46, m
9α 2.82, dd, 13, 6 2.55–2.63, m 2.63, m 2.69, dd, 13.9, 3.0 2.22, m 2.20, m 2.46, m 2.44–2.49, m
9β 2.25, c 2.03–2.12, m 2.22, m 2.50, dd, 13.9, 4.2 2.61, m 2.60, m
11α 2.71–2.80, m 2.66–2.72, m
11β 2.5, c
13α 1.44, d, 7 1.19, d, 7.7 6.30, d, 3.5 6.45, d, 3.5 5.57, d, 3.6 6.30, d 1.15, d, 7.8 1.17, d, 7.8
13β 5.58, d, 3.5 5.68, d, 3.0 6.29, d, 3.6 5.58, d
14α 5.06, br 4.93, s 5.02, br s 5.09, br s 4.66, brs 4.94, s 4.89, d, 9.0 4.91, s
14β 4.76, br 4.63, s 4.69, br s 4.84, br s 4.98, brs 4.60, s 4.92, s
15α 1.24, d, 7 3.84, dd, 8.9, 3.1 1.28, d, 6.5 1.28, d, 6.9 3.71, dd, 9.0, 3.0 6.25, dd 5.25, t, 2.0 5.27, t, 2.1
15β 3.61, dd, 8.9, 3.1 3.98, dd, 9.0, 3.0 5.87, dd 5.39, t, 2.0 5.42, t, 2.2
1′ 3.30, s 3.48, q, 7.2
2′ 1.14, t, 7.2 2.24, dd, 7.1, 1.7
3′ 2.09–2.17, m
4′ 0.96, d, 6.6 0.98, d, 6.6
5′ 0.96, d, 6.6 0.98, d, 6.6

Table 6.

1H-NMR data of compounds 3442.

NO. 34 [35] 35 [36] 36 [8] 37 [37] 38 [37] 39 [32] 40 [38] 41 [7] 42 [11]
CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3
1 2.89, m 2.93, m 2.95, q, 8.4 2.18, m 2.94, m 2.44–2.52, m 2.90, q, 8.0
2α 2.46, m 2.48, m 2.44, m 2.23, m 2.67, m 1.78, m 2.43, br dd, 14, 8 2.25–2.37, m 2.49, m
2β 1.79, m 1.79, m 1.77, m 1.51, m 2.18, dd, 14, 7 1.52–1.62, m 1.80, m
3 5.55, dd, 8, 6 5.57, ddt, 8, 6, 2 5.56, m 5.72, m 5.54, m 5.56, m 5.75, tt, 8, 7, 1.5 5.50, t, 6.7 5.56, m
5 1.93, m 2.85, m 2.82, m 2.66, d, 11.5 2.55, m 2.85, m 2.80, br d, 10, 1.5 2.89–2.97, m 2.04, m
6 3.99, t, 9 4.11, t, 10 4.00, t, 9.9 3.88, t, 10.5 4.07, t, 10.0 4.06, dd, 16.9, 7.6 3.91, t, 10 4.22, t, 9.5 4.39, t, 10.0
7 2.81, m 2.42, m 2.01, m 1.69, m 1.76, m 2.85, m 3.05, ddddd, 10, 10, 4, 3.5, 3 2.92–3.01, m 2.76, t, 9.5
8α 2.11, m 1.92, m 1.45, m 2.40, m 2.30, m, 4, 4 2.24–2.33, m 1.80, m
8β 1.31, m 1.42, m 3.77, m 1.97, m 1.45, m, 10, 9 1.44–1.55, m
9α 2.49, m 2.52, m 2.71, dd, 13.1, 5.0 1.45, m 5.54, m 2.46, m 2.63, ddd, 12, 9, 4 1.88–1.98, m 2.48, m
9β 2.03, m 2.01, m 2.23, m 2.30, m 1.78, dt, 14.3, 5.0 2.04, m
11 2.20, m 2.69, p, 8 2.57, m 2.32, m 2.29, m
13α 1.22, d, 7 1.16, d, 8 1.42, d, 7.0 1.25, m 1.23, d, 7.0 5.49, d, 3.1 6.21, d, 3.5 6.27, d, 3.0 3.79, d, 12.0
13β 6.21, d, 3.5 5.49, d, 3 5.55, d, 3.0 3.65, d, 11.0
14α 4.91, s 4.91, br s 5.05, s 1.35, s 1.80, br s 4.97, d, 6.4 5.20, br s 2.75, d, 4.4 4.93, d, 6.5
14β 4.92, br s 4.99, s 5.09, br s 2.54, d, 4.4
15α 5.26, brt, 2 5.28, br t, 2 5.43, t, 2.2 5.50, s 5.44, br s 5.27, t, 2.1 5.53, t, 1.5 5.45, s 5.41, br t, 2.0
15β 5.38, brt, 2 5.41, br t, 2 5.28, t, 2.2 5.41, s 5.33, br s 5.45, t, 2.0 5.36, t, 1.5 5.25, s 5.30, br t, 2.0
2′α 5.71, s 5.72, br s 2.23, m 2.17, m 2.55, m 2.59, qq, 7, 7 5.69, s 2.23, dd, 7.5, 2.0
2′β 2.18, m
3′ 2.13, m 2.09, m 2.09, m 2.13, m
4′ 1.89, s 1.91, br s 0.97, d, 6.6 0.95, d, 6.5 0.95, d, 6.5 0.96, d, 6.6 1.20, d 1.91, s 0.97, d, 6.5
5′ 2.17, s 2.19, br s 0.97, d, 6.6 0.95, d, 6.5 0.95, d, 6.5 0.96, d, 6.6 1.19, d 2.18, s 0.97, d, 6.5

Table 7.

1H-NMR data of compounds 4351.

NO. 43 [8] 44 [37] 45 [37] 46 [37] 47 [37] 48 [37] 49 [37] 50 [39] 51 [37]
CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3
1 2.90, m 2.86, q, 8.5 2.89, m 2.90, q, 8.5 2.90, q, 8.0 2.90, q, 3.0 2.89, m 2.88, q, 8.4 2.13, m
2α 2.21, m 2.44, m 2.57, dt, 13.0, 4.0 2.46, m 2.03, m 2.02, m 2.57, dt, 13.0, 4.0 2.44, m 2.44, m
2β 1.84, m 1.76, m 1.96, m 1.78, m 1.80, m 1.82, m 1.99, m 1.76, m
3 5.61, t, 7.6 5.54, m 5.54, m 5.55, m 5.57, m 5.57, m 5.56, m 5.56, m 5.56, m
5 2.62, m 2.71, t, 9.5 2.89, m 2.73, t, 9.5 2.80, t, 9.5 2.82, t, 9.2 2.89, m 2.75, t, 9.2 2.79, t, 9.5
6 4.81, d, 11.2 4.29, t, 9.5 4.01, t, 9.5 4.36, t, 9.5 4.08, t, 10.0 4.05, t, 9.5 3.91, t, 9.5 4.37, t, 9.2 4.02, t, 9.5
7 1.87, m 2.35, m 2.07, m 2.03, m 2.13, m 2.34, m 1.94, m 2.45, m
8α 3.05, m 2.10, m 2.10, m 2.12, m 2.15, m 2.13, m 2.12, m 1.64, m 2.38, q, 8.0
8β 2.50, m 1.39, m 1.30, m 1.39, m 1.35, m 1.35, m 1.81, m
9α 2.52, m 2.44, m 2.49, dt, 14.0, 8.0 2.46, m 2.47, m 2.49, m 2.50, dt, 14.0, 8.0 2.03, m 2.03, m
9β 2.17, m 2.01, m 1.75, m 2.07, m 1.75, m 2.50, m 1.78, dt, 14.0, 6.5
11 2.46, m 2.49, m 2.89, q, 8.0
13α 4.38, dd, 16.6, 13.3 1.76, m 1.96, m 1.80, m 1.82, m 1.76, m 2.62, d, 16.7 3.69, dd, 4.5, 4.5
13β 1.64, dd, 15.0, 2.5 1.68, m 1.78, m 1.69, m 1.67, m 1.57, dd, 15.0, 2.5 2.80, d, 16.7 3.57, dd, 5.0, 5.0
14α 5.01, s 4.91, s 4.93, s 4.93, s 4.93, s 4.92, s 4.93, s 4.93, s 4.92, s
14β 4.94, s 4.88, s 4.89, s 4.91, s 4.90, s 4.91, s 4.90, s
15α 5.42, br s 5.41, br t, 1.5 5.39, br t, 2.0 5.42, br t, 2.0 5.39, br t, 2.0 5.40, t, 2.0 5.41, br t, 2.0 5.43, br s 5.37, br t, 2.0
15β 5.27, br t, 1.5 5.29, br t, 2.0 5.29, br t, 2.0 5.27, br t, 2.0 5.26, t, 2.0 5.29, br t, 2.0 5.30, br s 5.25, br t, 2.0
16 4.97, m 4.27, m 4.16, m 3.97, m 4.21, m 4.31, m
17 1.22, d, 6 1.23, d, 6.0 1.30, d, 8.5 1.24, d, 6.0 1.24, d, 6.0 1.23, d, 6.0 2.32, s
2′ 2.23, m 2.21, dd, 7.5, 1.5 2.23, dd, 7.5, 2.0 2.22, dd, 7.5, 2.0 2.22, dd, 8.0, 2.0 2.23, dd, 8.0, 1.5 2.22, dd, 8.0, 2.0 2.23, dd, 7.1, 1.7 2.23, dd, 8.0, 1.5
3′ 2.11, m 2.15, m 2.10, m 1.96, m 2.15, m 2.13, m 2.12, m 2.12, m 2.13, m
4′ 0.97, d, 6.6 0.95, d, 6.5 0.97, d, 6.5 0.97, d, 6.5 0.97, d, 6.5 0.97, d, 6.5 0.97, d, 6.5 0.97, d, 6.5 0.96, d, 7.0
5′ 0.97, d, 6.6 0.95, d, 6.5 0.97, d, 6.5 0.97, d, 6.5 0.97, d, 6.5 0.97, d, 6.5 0.97, d, 6.5 0.97, d, 6.5 0.96, d, 7.0

Note: The 1H-NMR data of 2″α, 2″β, 3″, and 4″ for 51 were recorded as 2.30, m; 1.32, m; 2.03, m; and 3.45, m, respectively.

Table 8.

1H-NMR data of compounds 5257.

NO. 52 [22] 52 [22] 53 [22] 54 [40] 55 [41] 56 [42] 57 [12] 57 [22]
CD3OD C5D5N CD3OD CD3OD C5D5N DMSO CDCl3 C5D5N
1 2.96, m 2.75, m 3.00, m 2.97, q, 8.4 2.76, m 2.80, br t, 10.0 2.77, m
2α 2.35, m 2.22, m 2.30, m 2.36, m, overlapped 1.69, dd, 12, 10 2.39, m 2.30, m
2β 1.96, m 1.81, m 1.96, m 1.96, dt, 14.0, 6.9 2.14, dd, 13.5, 7.0 1.98, m 1.92, m
3 4.62, m 4.41, m 4.61, m 4.63, dd, 7.8, 5.9 4.84, br t, 7 3.56, dd, 15.5, 8.0 4.65, br dd, 6.0, 6.0 4.81, dd, 7.3, 1.5
4 1.85, m
5 2.79, dd, 9.5, 9.5 2.68, m 2.83, dd, 9.9, 9.9 2.75, dd, 9.9, 8.4 1.91, m 3.01, dd, 17.5, 8.5 2.74, m
6 4.33, dd, 9.9, 9.5 4.33, dd, 9.9, 9.5 4.38, dd, 10.6, 9.9 4.23, t, 9.9 3.93, t, 10 4.28, dd, 9.0, 9.0 4.26, m
7 2.43, m 2.33, m 2.36, m 2.39, m, overlapped 2.78, m 2.89, m 2.70, m
8α 1.88, m 1.58, m 2.16, tt, 10.0, 5.0 2.25, m 2.28, m 1.97, m
8β 1.44, m 1.20, m 3.72, m 1.39, m 1.24, m 1.46, m 1.16, m
9α 2.03, m 2.10, m 2.15, dd, 12.6, 8.0 2.08, ddd, 13.7, 9.3, 5.1 2.54, m 2.21, m 2.10, m
9β 2.53, m 2.36, m 2.71, dd, 12.6, 5.0 2.52, m, overlapped 1.97, m 2.52, ddd, 13.0, 6.5, 6.5 2.37, m
11 2.67, m 2.64, m 2.77, m 2.54, dt, 11.8, 3.7
13α 1.12, dd, 7.7, 1.5 1.05, d, 7.7 1.23, d, 7.7 3.71, dd, 9.9, 3.7 1.65, d, 7 5.59, d, 2 6.12, d, 3.0 5.53, br d, 1.5
13β 3.63, dd, 9.9, 3.7 6.00, d, 2.5 5.57, d, 3.0 5.87, br d, 1.5
14α 4.99, s 5.00, s 5.09, s 4.99, s 5.14, br s 4.95, d, 5 5.01, br s 5.02, d, 1.1
14β 4.91, s 4.83, s 4.98, s 4.91, s 5.01, br s 4.99, d, 5 4.94, br s 4.83, d, 1.1
15α 5.40, s 5.82, br s 5.36, d, 1.3 5.42, d, 1.7 5.87, br s 1.15, d, 10 5.44, br s 6.23, d, 3.4
15β 5.31, s 5.50, br s 5.32, d, 1.3 5.30, d, 1.7 5.54, br s 5.35, br d, 1.0 5.38, d, 3.4
1′ 4.46, d, 7.7 5.04, d, 7.9 4.44, d, 7.7 4.45, d, 7.8 5.06, d, 7 4.19, d, 7.5 4.47, d, 7.5 5.05, d, 7.9
2′ 3.24, m 3.94, m 3.20, m 3.23, m 2.95, m 3.20–3.40, m 3.96, m
3′ 3.36, m 4.24, m 3.31, m 3.36, m 3.16, m 3.87, dd, 10.0, 10.0 4.24, m
4′ 3.28, m 4.06, m 3.26, m 3.28, m 3.04, m 3.20–3.40, m 4.08, m
5′ 3.28, m 4.22, m 3.24, m 3.27, m 3.08, m 3.67, dd, 12.0, 5.5 4.22, m
6′α 3.66, dd, 11.9, 5.0 4.36, m 3.64, dd, 12.0, 6.0 3.88, dd, 12.0, 1.9 3.42, dd, 11.5, 6.0 3.20–3.40, m 4.40, dd, 11.8, 5.5
6′β 3.86, br d, 11.9 4.56, dd, 11.9, 2.0 3.87, dd, 12.0, 2.0 3.67, dd, 12.0, 5.2 3.65, dd, 9.5, 4.5 4.57, dd, 11.8, 2.4

Note: The 1H-NMR data of 1″ and 2″ for 54 were recorded as 3.51, q, 7.0 and 1.17, t, 7.0.

Table 9.

1H-NMR data of compounds 5861.

NO. 58 [43] 59 [44] 60 [45] 61 [46] NO. 58 [43] 59 [44] 60 [45] 61 [46]
CD3OD C5D5N CD3OD DMSO CD3OD C5D5N CD3OD DMSO
1 2.99, dd, 16.8, 8.4 2.99, t, 9.1 15α 5.43, br s 5.45, br s 5.32, d, 1.1 5.38, br s
2α 2.33, m 2.26, m 15β 5.35, br s 5.27, d, 1.1 5.20, br s
2β 1.96, m 1.98, m 1′ 4.45, d, 7.2 4.66, d, 8.1 4.40, d, 7.8
3 4.63, m 4.64, m 4.50, m 2′ 3.87, m 5.65, br t, 10 4.85, m
5 2.78, dd, 9.6, 9.6 2.85, br d, 9.4 3′ 3.37, t, 8.4 3.58, t, 8.6
6 4.26, dd, 9.6, 9.3 4.04, t, 10.2 4.13, dd, 10.2, 8.9 4′ 3.28, m 3.38, m
7 2.89, m 2.34, dd, 8.1, 2.1 5′ 3.26, m
8α 2.26, m 3.50, m 6′α 3.86, dd, 12.0, 2.4 3.91, dd, 12.0, 2.1
8β 1.45, m 6′β 3.68, dd, 12.0, 5.4 3.70, dd, 12.0, 5.8
9α 2.18, m 2.06, m 1″ 4.32, d, 7.8
9β 2.50, m 2.58, dd, 11.5, 4.7 2″ 7.56, d, 7.8 6.9–7.5, m 7.02, d, 2.0
11 2.72, t, 7.8 3″ 7.37, d, 7.8
13α 6.09, d, 3.0 1.09, d, 7.7 6.02, d, 3.5 5″ 7.37, d, 7.8 6.9–7.5, m 6.78, d, 8.1
13β 5.56, d, 3.0 5.61, d, 3.2 6″ 7.56, d, 7.8 6.9–7.5, m 6.94, dd, 8.2, 1.9
14α 5.01, s 5.13, br s 5.11, br s 4.91, br s 2‴ 6.48, d, 15.6 6.37, d, 15 6.24, d, 15.9
14β 4.91, s 4.90, br s 4.88, br s 3‴ 7.58, d, 15.6 7.82, d, 15 7.55, d, 15.9

Table 10.

1H-NMR data of compounds 6163.

NO. 61 [25] 62 [46] 62 [25] 63 [46] NO. 61 [25] 62 [46] 62 [25] 63 [46]
CD3OD DMSO DMSO DMSO CD3OD DMSO DMSO DMSO
1 4.88, d, 7.6 2.92, m 1′ 4.54, d, 8.0 4.40, d, 7.8 5.01, d, 8.0 4.40, d, 7.8
2α 2.25, m 2′ 3.43, m
2β 1.77, m 3′ 3.40, m
3 4. 64, m 4.50, t, 7.4 4.64, m 4.51, br s 4′ 3.21, m
5 2.80, m 5′ 3.18, m
6 4.27, t, 9.6 4.13, t, 9.5 4.11, t, 9.6 4.14, t, 9.6 6′α 3.36, m
7 2.91, m 6′β 3.29, m
8α 2.23, m 1″ 4.51, d, 8.0 4.47, d, 7.8 4.98, d, 7.6 4.46, d, 7.7
8β 1.35, m 2″ 3.28, m
9α 2.11, m 3″ 3.47, m
9β 2.41, m 4″ 3.21, m
11 5″ 3.28, m
13α 6.10, d, 3.6 6.02, d, 3.5 6.01, d, 3.6 6.02, d, 3.5 6″α 3.36, m
13β 5.57, d, 3.6 5.61, d, 3.1 5.59, d, 3.6 5.61, d, 3.5 6″β 3.29, m
14α 5.02, br s 4.91, s 5.19, br s 4.91, br s 1‴ 4.36, d, 7.8 4.52, d, 7.8
14β 4.93, br s 4.88, s 5.08, br s 4.88, br s 2’—OH 5.10, d, 4.1
15α 5.40, br s 5.38, br s 5.36, br s 5.38, br s 2″—OH 5.24, d, 3.2
15β 5.35, br s 5.20, br s 5.20, br s 2‴—OH 5.26, d, 3.4

Note: The 1⁗, 2⁗, 3⁗, 4⁗, 5⁗, 6⁗α, and 6⁗β data of compound 63 were 4.36, d, 7.9; 3.05, m; 3.18, m; 3.04, m; 3.24, m; 3.42, m; and 3.29, m.

Table 11.

13C-NMR data of compounds 163.

NO. 1 [6] 2 [7] 3 [8] 4 [9] 5 [10] 6 [10] 7 [11] 8 [7] 9 [12] 11 [14] 12 [7] 13 [15] 14 [16] 15 [18] 15 [17] 16 [19] 17 [15]
CD3OD CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CD3OD C5D5N CDCl3 CDCl3
1 52.7 53.1 52.1 50.6 59 47.9 46.3 52.5 47.3 47.6 41.4 42.1 42.2 43.6 43 43.3 43.5
2 26.4 34.2 26.2 21.6 40 39.7 39.7 26 30.5 32.5 34.8 38.3 38.3 35.5 39.6 38.6 38.7
3 40.6 30.2 39.2 40.3 27.1 27 27.3 31 32.8 30.2 73.9 78.3 78.4 79.1 78.1 73.6 73.5
4 81.9 49.4 83.5 80 56.1 55 55.9 152 152 151.1 40.6 47 47 48.2 47.9 153.3 153.2
5 53.4 58.2 49.1 51.2 51.5 53.3 51.5 51.2 52.2 52 47.8 50.6 52.9 52.3 51.5 49.7 49.5
6 32.8 24.9 29.3 130.1 141.8 159.8 135 84 85.6 85.1 83.4 85.9 85.9 83.9 82.5 83.7 83.7
7 48.6 28.9 39 131.6 132.7 142 133.2 48.6 42.3 45.1 46.3 52.9 50.6 60 59.2 39.3 50.8
8 31.5 45.2 32 23.5 25 19.2 25.3 26.5 32.8 30.8 29.2 32.7 32.8 77.1 76.3 28.7 32.3
9 42.6 78.5 36.6 42.7 67 27.5 27.7 40.6 37.9 36.1 39.4 37 37 48.9 48.9 36 35.9
10 75.5 36.4 75 75 213.8 75.8 76.5 74.7 150.2 149.2 148.5 149.2 149.3 146.3 146.1 149 148.8
11 153.5 146.6 149.5 22.8 33 32.8 33.1 42.8 50.1 139.7 39.7 42 42.1 43.5 42.9 46.3 42
12 108.3 114.2 111.1 21.7 22.1 19.9 19.8 178.8 179 169.5 180.3 178.6 178.6 181.9 179.5 179.7 179.8
13 20.3 22.7 66.1 24.7 22.1 22.1 13.2 13.5 120 11.8 13 13.1 16.8 19 11.4 13.1
14 23.8 65 25.4 34.6 193 68.7 27.1 112.1 112.5 111.8 112.5 112.5 115.1 114.2 113.4 113.5
15 26.3 180.1 32.3 19.9 19.8 20 107.9 109.5 109.5 8.3 14.1 18.1 18.8 17 111.4 111
1′ 173 171
2′ 43.6 21
3′ 25.8
4′ 22.6
5′ 22.6
NO. 18 [20] 20 [22] 21 [18] 23 [25] 24 [18] 24 [18] 25 [27] 27 [7] 28 [29] 30 [31] 31 [32] 32 [33] 33 [34] 34 [35] 35 [36] 36 [8] 37 [37]
CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CD3OD C5D5N CDCl3 CD3OD CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3
1 43.3 43.6 44.2 43.9 45.2 46 44.7 40.1 39.8 40 39.6 43.7 43.7 44.1 43.8 44.6 62.9
2 38.6 38.6 39 38.7 39.2 40 39.9 45.4 44 45.7 44.6 36.2 36.2 36.6 36.3 36.7 38.1
3 73.6 73.7 73.6 73.2 73.7 73.1 73.1 217.6 219.2 217.7 204.4 74.4 74.4 73.8 73.7 74.4 74
4 153.2 152.7 153 152.7 152.4 154.3 155.2 53.3 50.6 52.9 144.4 148.9 148.9 148.8 148.8 148.3 145.1
5 49.7 49.9 50.7 45.4 51.3 51.9 50.5 45.4 47.1 44.6 48.6 50.1 50.1 50.4 50 51.2 53.1
6 83.6 78.9 79.1 83.7 79 80.9 78.8 88.5 88.8 88.8 86.8 83.7 83.7 83.9 83.8 79.1 81.8
7 39.3 53.4 56 49.6 51 51.7 50.1 43.7 44 44.2 44 45.7 45.7 50 45.6 55.8 55.5
8 28.7 69.9 74.9 28.8 71.9 74.1 66 29.3 31.8 31.8 31.6 28.7 28.7 32.4 28.7 75.1 24.9
9 36 45 44.8 32.6 41.3 42.9 44.2 38.5 38.7 38.4 38.2 36.2 36.2 36.3 36.3 45.3 37.4
10 148.9 143.1 143.2 147.8 142.7 144.7 145.1 149.6 148.7 149.1 148.2 148.4 148.4 148.8 148.9 143.1 70
11 46.3 38.1 42 139.6 138.1 140.6 137.7 39.3 138.7 139 138.6 39.2 39.2 42.1 39.2 42.1 42.4
12 179.6 179.1 178.6 170.3 169.9 172 170.1 179.8 169.9 169.9 not detected 179.6 179.6 178.4 179.6 178.6 177.6
13 11.4 11.2 15.9 120.2 123.2 122.9 120.9 11.6 121.3 121.2 121.4 11.4 11.4 13.2 11.3 16.1 12.4
14 113.3 115.9 116.2 115.2 117.1 117 115.9 112.6 113.1 113.1 113.6 113.4 113.4 113.5 113.2 116.4 20.7
15 111.3 112.6 112 110.9 113.2 112.1 109 70.5 14.2 68.1 122.1 113.2 113.2 112.9 113.1 114.3 118.3
1′ 59.3 66.7 172.8 172.8 166.3 166.2 173 172.5
2′ 14.9 43.6 43.6 116 115.9 43.8 43.6
3′ 25.7 25.7 157.3 157.2 25.9 25.7
4′ 22.4 22.4 27.4 27.4 22.6 22.3
5′ 22.4 22.4 20.3 20.2 22.6 22.3
NO. 38 [37] 39 [33] 41 [7] 42 [11] 43 [8] 44 [37] 45 [37] 46 [37] 47 [37] 48 [37] 49 [37] 50 [39] 51 [37] 52 [22] 52 [22] 53 [22] 54 [40]
CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CD3OD C5D5N CD3OD CD3OD
1 43.9 44.6 43.1 44.2 45 44.2 43.5 44.3 44.1 44.1 43.5 44.3 45.9 45.8 44 46.3 45.7
2 37.3 34.6 32.2 36.2 35.7 36.2 36 36.3 36.4 36.5 36.3 36.4 36.4 38.5 37.6 38.4 38.4
3 73.5 74.3 73.4 74.3 74.3 74.3 74.4 74.3 74.3 74.3 74.4 75.5 74.3 81.7 80.4 81.6 81.4
4 148.4 147.8 148.7 148.1 147.1 148.5 149 148.3 148.4 148.6 149.2 148.4 148.6 151.5 150.7 151 151.1
5 50.4 50.2 48.8 47.8 49.7 50.3 50 50.3 50 50 50.1 50.3 49.9 52 50.2 52.5 51.4
6 83.6 83.9 83.9 83.7 81.5 82.2 81.2 83.3 84.8 84.3 81 83 84.2 85.7 83.6 81.2 85.1
7 49.2 45.2 44.7 50.1 165.3 52.7 55 51.9 48.9 47.9 53.4 52 46.7 41.4 39.6 54.7 45.6
8 29.9 30.6 26.8 25 29.9 24.9 27.4 25.5 32.4 32.2 27.1 25.2 30.6 30 28.6 70.9 33.1
9 122.2 36.6 34 34.7 30.7 34.6 36 34.4 35.9 36.1 36.1 34.6 36.4 37 36 46 36.1
10 137 148.2 57.3 148 147.9 148.2 147.7 148.1 148.3 148.5 148 148.2 148.5 151.4 145.9 150.8
11 42.2 139.5 139.3 75 125.7 75.7 76.1 76.4 46.4 43.5 77.5 76.5 43.9 47.7 45.5 40.5 49.5
12 178.3 170 169.9 177.5 173.4 177.2 180.3 177.7 179.6 179 177.8 176 176.5 183.1 179.6 182.5 178.9
13 12.9 120.3 121 64.3 55 41.2 40.9 42.8 38.3 37.1 38 44.4 40.8 12.2 11.4 11.8 67.6
14 27.9 114.3 50.3 114 114.3 113.5 113.4 113.8 113.7 113.6 113.3 114 113.5 114.2 113 116.4 114
15 116.8 113.4 112.6 114.1 118.3 114 114.4 114.2 113.4 113.2 113.9 114.5 113 114.2 112.2 115.7 113.2
16 64.8 63.5 64.9 67 64.9 65.7 210.4
17 24.9 24.4 24.9 24.3 23.9 24.6 32.3
1′ 173 172.8 166.2 173 173.1 173 172.9 172.9 172.8 172.8 172.8 173.1 172.8 103.3 103.8 102.5 103.2
2′ 43.6 43.6 115.9 43.6 43.8 43.6 43.6 43.6 43.6 43.6 43.6 43.8 43.6 75.7 75.3 75.8 75.3
3′ 25.8 25.8 157.9 25.8 25.9 25.7 25.7 25.8 25.8 25.8 25.7 25.9 25.8 78.7 78.6 78.8 78.2
4′ 22.4 22.4 27.6 22.4 22.6 22.4 22.4 22.4 22.4 22.4 22.4 22.5 22.4 72.2 71.7 72.4 71.8
5′ 22.4 22.4 20.5 22.4 22.6 22.4 22.4 22.4 22.4 22.4 22.4 22.6 22.4 78.4 78.4 78.4 77.9
6′ 63.3 62.9 63.4 62.9
NO. 55 a [41] 56 b [42] 57 c [12] 57 a [22] 57 d [22] 58 e [43] 59 a [44] 60 e [45] 61 b [46] 61 e [25] 62 b [46] 62 b [25] 63 b [46] NO. 58 e [43] 59 a [44] 60 e [45] 62 b [46] 62 b [25] 63 b [46]
1 44.4 42.1 45.4 44.5 43.7 46.2 45.9 46.1 43.5 46.2 43.4 43.4 43.9 1″ 130.9 126.7 127.8 103.9 103.9 103.9
2 37.9 37.3 38 38 37.3 38.6 37.3 37.8 36.9 38.5 36.9 36.9 37.4 2″ 129 114.9 115.4 72.4 72.4 73.4
3 80.5 86.2 80.7 80.5 79.7 81.3 79.5 80.9 83.3 81.4 83.2 83.2 79.8 3″ 130 148.2 149.7 73.8 73.8 86.6
4 150.8 44.1 150.2 150.6 150.3 150.8 150.2 150.1 150 150.6 149.9 150 150.4 4″ 150.1 147.3 146.8 79.4 79.4 68.9
5 50.8 49.5 50.7 50.1 49.1 51.8 51.6 52.4 48.8 51.7 48.8 48.8 49.2 5″ 130 116.3 116.5 76.1 76.1 73.2
6 79.4 86.2 84.7 83.6 83.6 85.2 83.1 80.8 76.9 85.2 86.6 86.6 83.7 6″ 129 122.1 123 60.8 61.1 63.5
7 56.3 46.8 45.8 45.1 44.6 46.4 45.9 54.4 44.3 46.5 44.3 44.3 44.7 1‴ 172.3 166.4 168.3 103.4 103.4 103.5
8 75.1 30.6 31 30.6 30.4 31.6 30.4 70.6 30.1 31.6 30.1 30.1 30.5 2‴ 121.7 115.6 115.3 72.7 72.7 73
9 46.6 35.7 33.9 34.2 34.1 34.4 33.8 46.4 33.8 34.4 33.8 33.7 34.2 3‴ 144.6 145.9 147.3 76.9 76.9 87.2
10 145.1 149.5 149.3 148.9 149.1 150 149 144.8 148.7 150 148.7 148.8 149.2 4‴ 68.5 68.5 69
11 42.3 140.1 141.5 141 140.5 142.1 140.5 39.9 140.2 142.1 140.1 140.1 140.6 5‴ 76.3 76.1 76.6
12 179 169.6 171.6 170 169.9 172.3 169.9 181.9 169.6 172.2 169.5 169.5 170 6‴ 61.1 61 61.3
13 16.5 119.5 120 119.4 120.1 120.4 119.5 11.5 119.8 120.4 119.7 119.9 120.2
14 115.1 112.7 114.1 113.9 113.9 114.7 114.9 116.6 113.6 114.7 113.6 113.6 114 NO. 61 b [46] 61 e [25]
15 112.3 18.1 112.8 112.1 111 113.6 114.9 116.2 110.8 113.8 110.8 110.8 111.1 1″ 104.1 105.3
1′ 104 104.1 102.3 104.3 102.9 103.1 98.5 99.4 101.7 102.3 101.7 101.7 102.2 2″ 72.3 75.6
2′ 75.3 73.6 74.3 75.3 73.9 78.2 76.1 75.3 70.2 74.6 70.1 70.1 72.8 3″ 73.9 78.3
3′ 78.2 76.8 77.5 78.6 77.2 75.3 74.9 76.4 88.3 88.3 88 88 88.4 4″ 79.4 71.5
4′ 71.8 70.2 71.1 71.7 70.5 71.8 71.8 72.1 68.5 70.2 68.4 68.4 68.9 5″ 76.1 77.8
5′ 78.5 76.8 77.2 78.5 77.2 77.9 78.2 78.1 76.3 77.5 76.3 76.3 76.8 6″ 61.1 62.7
6′ 62.9 61.2 62.1 62.8 61.5 62.8 62.6 62.8 60.9 62.6 60.8 60.9 63.5

Note: The 1″, 2″, 3″, and 4″ data of compound 51 were 176.3; 32.4; 18.3; and 48.8, respectively. The 13C-NMR data of 1″ and 2″ of 54 were recorded as 67.8 and 15.3. a: Measured in C5D5N. b: Measured in DMSO. c: Measured in CDCl3. d: Measured in CD3SOCD3. e: Measured in CD3OD.

2.2. Bioactivity of Guaiane Sesquiterpenes

2.2.1. Anti-Inflammatory

Nitric oxide (NO) is a related target of inflammation, and inhibiting the release of NO can treat inflammatory diseases. Dihydroestafiatol (13), zaluzanin C (23), and dehydrozaluzanin C (31) strongly inhibited the production of nitric oxide in RAW264.7 macrophages stimulated with lipopolysaccharide (LPS), with IC50 values of 7.11, 2.50, and 0.82 µM [31]. From the bioassay results, three exocyclic double bonds in guaianolides play a key role in the inhibition of the production of nitric oxide (NO), and a reduction in exocyclic double bonds will lower the inhibitory effect. Under the condition of the presence of three exocyclic double bonds, the hydroxylization of C-1 will enhance the inhibitory activity. Zaluzanin C (23) showed a potent inhibitory effect against NO production in LPS-stimulated RAW264.7 macrophages with an IC50 value of 6.54 ± 0.16 μM [34]. It may be speculated that the α-methylene-γ-lactone moiety of zaluzanin C (23) has a key role in its inhibition of NO release. Moreover, other functional groups, especially hydroxyl, have a great influence on the inhibitory effect of NO production. Zaluzanin C (23) showed remarkable inhibition against NO release in LPS-induced RAW264.7 macrophages, possibly because zaluzanin C (23) had an α-methylene-γ-lactone moiety and the large isovaleroxyl at C-3 hinders the binding of the compound to related proteins [37]. Guailactone can be structurally modified to obtain compounds containing the α-methylene-γ-lactone part. It is also used to introduce hydroxyl groups into guaiacols containing three outer-ring double bonds to enhance the inhibitory ability of these compounds against NO production and achieve anti-inflammatory effects.

Ainslide C (41), ainsliaolide A (34), diaspanolide B (39), zaluzanin C (23), and estafiatone (28) inhibit NLRP3 inflammasome activity by inhibiting the LDH release rate. Meanwhile, a Western blot assay showed that compound 41 inhibited the activity of inflammasome by inhibiting the production of Caspase-1 and IL-1β induced by LPS and Nigericin. Among them, the substituents of compounds 41, 34, 39, 23, and 28 are terminal double bonds, and the α-methylene-γ-butyrolactone structure seems to be the key to inhibiting LDH release activity [7]. Glucozaluzanin C (57) and dihydroestafiatol (13) showed significant anti-inflammatory activity by inhibiting the expression of nuclear factor kappa B (NF-κB) in the 293-NF-κB-luciferase reporter cell line and the production of TNF-α, IL-1β, IL-6, and IL-10 in RAW264.7 macrophages induced by lipopolysaccharide (LPS) [47].

8α-Hydroxy-11α,13-dihydrozaluzanin C (20) showed moderate COX-1-inhibiting activity with an IC50 value of 78.8 μM, comparable to that of the representative anti-inflammatory drug aspirin with an IC50 value of 77.2 μM. 8α-Hydroxy-11α,13-dihydrozaluzanin C (20) and 2′-O-E-Caffeoyl-8α-hydroxy-11α,13-dihydro-3-β-O-β-D-glucozaluzanin C (60) displayed potent COX-2 inhibitory activities with IC50 values ranging from 12.5 to 57.9 μM, in comparison with that of aspirin with an IC50 value of 87.6 μM [45].

2.2.2. Antitumor and Cytotoxic

8-Epidesacylcinaropicrin (25) exhibited moderate activity toward the human tumor cell lines MDA-MB-231 and HepG2, with IC50 values of 18.91, and 11.16 μM, respectively [8]. Mokko lactone (9), zaluzanin C (23), and glucozaluzanin C (57) showed non-specific significant cytotoxicity against the A549 (non-small cell lung adenocarcinoma), SK-OV-3 (ovarian), SK-MEL-2 (skin melanoma), XF498 (CNS), and HCT15 (colon) cell lines with ED50 values ranging from 0.36 to 5.54 μg/mL [12]. Dehydrozaluzanin C (31) is a guaiacol lactone, which has significant cytotoxicity to RAW264.7 macrophages. In the presence of three outer-ring double bonds, the carbonylation of C-1 may result in a high cytotoxicity to RAW264.7 macrophages [31].

2.2.3. Antiobesity

Ainsliaside A (59) isolated from Ainsliaea acerifolia had significant inhibitory activity on pancreatic lipase with a semi-inhibitory concentration of 15.3 ± 0.7 μM. In addition, ainsliaside A (59) also exhibited potent inhibitory effects against 3T3-L1 adipocyte cells and can be used as a potential antiobesity agent [43].

3. Germacrane-Type Sesquiterpenes

Germacrane sesquiterpenes represent a class of sesquiterpenes that are extensively distributed in Compositae plants, characterized by the formation of a substantial ten-membered ring structure at the 5 and 10 positions. Currently, all twelve germacrane-type sesquiterpenes reported from this genus are lactones, with lactone rings predominantly located at the C-6, C-7 and C-7, C-8 positions. Detailed information is presented in Figure 2 and Table 12.

Figure 2.

Figure 2

Chemical structures for compounds 6475.

Table 12.

The compound name, molecular formula, and NMR test reagent of germacrane-type sesquiterpenes.

No. Compound Name Molecular Formula Solvent Ref.
64 Isodihydrocostunolide C15H22O2 CDCl3 [48]
65 Taraxinic acid C15H18O4 CDCl3 [49]
66 Yunnanolide K C15H20O4 CDCl3 [11]
67 Germacra-1(10), 4-diene-11α-methyl-12,8α-olide-15-acid C15H20O4 DMSO/CD3OD [34,50]
68 Germacra-1(10),4,11(13)-triene-12,8α-olide-15-acid C15H18O4 CD3OD [50]
69 Ainsliaside B C21H28O9 C5D5N
CD3OD
[44]
70 Taraxinsaure-1′-O-β-D-glucopyranoside C21H28O9 CD3OD [51]
71 Picriside B C21H30O8 C5D5N [27]
72 Ainsliaolide C C26H40O12 DMSO [31]
73 Taraxic acid-1′-O-β-D-glucopyranoside C21H28O9 CD3OD/C5D5N [2]
74 Germacra-1(10),4,11(13)-triene-12,8α-olide-15-oic acid(15-1′)-β-D-glucopyransyl ester C21H28O9 CD3OD [50]
75 Ainsliaea latifolia A C21H30O9 CD3OD [52]

3.1. NMR Data of Germacrane-Type Sesquiterpene (6475)

The NMR spectrum data for both 1H and 13C are presented in Table 13 and Table 14. A summary of the test instruments used to obtain the NMR data for compounds 6475 is provided. The 1H and 13C data of compounds 67, 68, and 74 were measured with the Bruker Avance III-500 instrument (Bruker, Switzerland). The nuclear magnetic data of compounds 69 and 71 were obtained by the JEOL FX-90Q instrument (JEOL, Duzhao, Japan). The NMR spectra of compounds 65, 66, 67, 72, 73, and 75 were recorded on various instruments including the Brukerspeckospin AC-600P (Bruker, Germany), Bruker Ascend-500 spectrometer (Bruker, Germany), Bruker Advance 500 (Bruker, Germany), Bruker Avance 600 (Bruker, Biel, Switzerland), JNM-FX-100 (JEOL, Japan), and Bruker Avance-500 (Bruker, Karlsruhe, Germany), respectively. The 1H-NMR data of compound 64 were measured at a frequency of 300 MHz; however, no literature reports exist regarding the proton data for compound 70. The carbon spectra for compounds 64 and 70 were acquired at 75 MHz and 25.2 MHz, respectively.

Table 13.

1H-NMR data of compounds 6475.

NO. 64 [48] 65 [49] 66 [11] 67 [34] 67 [50] 68 [50] 69 [44] 71 [27] 72 [31] 73 [2] 74 [50] 75 [52]
CDCl3 CDCl3 CDCl3 DMSO CD3OD CD3OD C5D5N C5D5N DMSO C5D5N CD3OD CD3OD
1 1.68–1.40, m 5.68, dd, 13.0, 3.7 5.09, dd, 12.0, 5.0 5.06, dd, 11.7, 4.5 5.06, dd, 11.7, 4.5 5.06, dd, 11.7, 4.5 6.72, br t, 7 4.81, m 5.64, dd, 11.0, 4.0 5.13, m 5.16, dd, 11.8, 4.7
2α 1.68–1.40, m 3.38, m 2.31, m 2.16, t, 12.3, 4.9 2.13, m 2.13, m 2.17, m 2.14, m 2.38–2.42, m
2β 2.18, m 2.02–2.06, m 2.02, m 2.02, m 2.26, m 3.54, m 2.14–2.20, m
3α 2.10, d, 2.7 2.25, m 2.93, m 2.66–2.72, overlapped 2.69, m 2.69, m 1.83, m 2.3–2.0, m 2.92, dd, 12.5, 3.9
3β 1.9–1.7, m 2.35, m 1.88, m 1.78, t, 12.3, 5.2 1.78, m 1.78, m 2.61, m 1.90–1.98, m
5 5.15, d, 6 4.91, d, 10.0 5.51, dd, 11.0, 2.5 5.38, dd, 11.1, 2.1 5.38, dd, 11.1, 2.1 5.38, dd, 11.1, 2.1 4.81, d, 10 4.75, br s 4.94, dd, 10.0, 1.2 5.74, m 5.65, dd, 11.3, 2.6
6α 3.13, m 3.01, t, 16.1, 10.8 3.01, m 3.01, m 4.58, dd, 10, 9 3.19–3.24, m
6β 4.8, m 4.58, dd, 10.0, 9.0 2.49, d, 16.5 2.41–2.55, overlapped 2.44, m 2.44, m 4.77, d, 9.6 4.72, dd, 10.0, 10.0 2.55–2.65, m
7 3.6, m 2.56, m 2.31, m 1.82–1.90, m 1.86, m 1.86, m 1.63, m 2.54, m 1.92–2.01, m
8α 1.68–1.40, m 2.19, m 4.39, t, 11.5 1.72, m 2.3–2.0, m
8β 4.19–4.25, m 4.22, m 4.22, m 2.06, m 4.27, m 4.27–4.37, m
9α 1.68–1.40, m 2.90, m 2.93, m 2.66–2.72, overlapped 2.66, m 2.66, m 2.24, m 2.86, m 2.83, d, 12.3
9β 2.15, m 2.28, m 2.27, t, 11.8 2.27, m 2.27, m 1.96, m 2.3–2.0, m 2.33–2.38, m
10 2.5, m
11 2.78, m 2.41–2.55, overlapped 2.51, m 2.33, m 2.54–2.58, m
13α 6.2, d, 2 6.24, d, 3.4 1.26, d, 7.5 1.11, d, 7.0 1.11, d, 7.0 6.08, m 5.51, d, 3.2 1.09, d, 6.6 6.23, d, 3.5 6.23, dd, 18.8, 3.0 1.28, d, 7.0
13β 5.65, d, 2 5.51, d, 2.9 5.79, m 6.35, d, 3.6 5.74, m
14 1.1, d, 8 1.35, s 1.27, s 1.27, s 1.31, s 1.37, br s 1.30, s 1.41, s 1.41, s
15α 1.2, s 1.60, s 1.71, br s 3.78, br s 1.72, d, 1.2
15β 4.40, br s
1′ 6.26, d, 8 4.96, d, 7.5 4.17, d, 7.8 6.18, d, 7.6 5.52, d, 7.9 5.56, d, 7.8
2′ 2.97, m 4.44–3.80, m 3.43, overlapped
3′ 3.13, m 4.44–3.80, m 3.43, overlapped
4′ 2.99, m 4.44–3.80, m 3.43, overlapped
5′ 3.23, m 4.44–3.80, m 3.43, overlapped
6′α 3.44, d, 11.2, 7.2 4.44–3.80, m 3.81, m 3.84, dd, 12.0, 2.0
6′β 3.81, d, 11.2, 1.8 4.44–3.80, m 3.69, m 3.75, dd, 12.0, 4.4

Note: The 1H-NMR data of 1″, 2″, 4″α, and 4″β and 5″ of 72 were recorded as 4.88, br s; 3.74, m; 3.57, d, 9.6; 3.83, d, 9.6; and 3.33, s, respectively.

Table 14.

13C-NMR data of compounds 6475.

NO. 64 [48] 65 [49] 66 [11] 67 [34] 67 [50] 68 [50] 69 [44] 70 [51] 71 [27] 72 [31] 73 [2] 74 [50] 75 [52]
CDCl3 CDCl3 CDCl3 DMSO CD3OD CD3OD CD3OD CD3OD C5D5N DMSO CD3OD CD3OD CD3OD
1 16.7 149.9 128.8 128.9 128.9 130.4 143 149.7 126.9 125.9 149.6 130 129.8
2 32.6 26.7 26.8 27.1 27.1 27.6 26.2 27.6 27.7 25.9 27.6 27.7 27.9
3 42.6 39.2 34.8 34.9 34.9 35.7 38 39.9 36 34.9 40 35.5 35.7
4 148.9 139.8 124.1 125.1 125.1 126.6 141.3 141.8 141 138.8 141.8 126.6 125.5
5 118.5 126 150.7 148.6 148.6 149.2 127.1 127.2 130.1 130.1 127.1 151.6 152
6 76.4 82.1 28.6 31.1 31.1 32.8 82.8 83.8 80.3 78.7 83.8 32.8 32.4
7 39.5 50.3 48.3 52.6 52.6 50.1 46.7 51.1 50.8 53.7 51.1 50.1 54.4
8 41.7 30.1 82.4 82.6 82.6 85.1 24.2 31.3 27.1 27 31.3 85 84.5
9 32.7 36.7 46.2 45.5 45.5 47.2 26.4 37.2 41.1 40.7 37.2 47.2 46.8
10 37.5 130.3 134.2 134 134 134.3 135.1 131.9 137.6 137 131.9 135.1 135.6
11 139.9 143.2 40.7 41.4 41.4 141.2 139 144.5 141.2 41 144.4 141.1 43
12 170.4 170.6 178.7 178 178 171.7 172.4 172.7 170.3 178.1 172.6 171.7 180.5
13 121.5 120.1 11.7 13.1 13.1 121.2 119.4 120.4 119.1 12.8 120.4 121.2 13.2
14 22.5 173.3 16.8 16.8 16.8 17.1 167.6 169.8 16.3 15.8 167.8 17.4 17.3
15 28.6 17 171.9 169 169 167.5 17.2 17.3 67.8 65.8 17.3 167.5 167.7
1′ 95.7 95.3 105.3 103.1 95.3 95.7 95.7
2′ 73.9 73.9 75.2 73.3 73.9 74 74
3′ 78.6 78.3 78.6 76.6 78.3 78.7 78.4
4′ 71 71 71.8 70.2 71 71 71
5′ 77.9 78.7 78.6 75.8 78.7 78.4 78.7
6′ 62.4 62.3 62.9 67.5 62.4 62.2 62.2

Note: The 13C NMR of 1″, 2″, 3″, 4″, and 5″ of 72 were 109.3; 75.6; 78.7; 73.2; and 63.3, respectively.

3.2. Bioactivity of Germacrane-Type Sesquiterpene

Isodihydrocostunolide (64) showed moderate cytotoxicity against the human cancer cell lines MDA-MB-231 (IC50 = 18.2 μM) and HepG2 (IC50 = 12.2 μM), respectively [11]. Ainsliaea latifolia A (75), isolated from Ainsliaea latifolia, exhibited moderate activity against the HCT116 and SMMC-7721 human tumor cell lines when adriamycin was used as the positive control, with IC50 values of 14.72 and 10.53 μM [52].

4. Eudesmane Sesquiterpenes

The basic skeleton of eudesmane-type sesquiterpenes consists of two six-membered rings comprising a total of 15 carbon atoms. These compounds exhibit a diverse range of biological activities, including anti-inflammatory, cytotoxic, antibacterial, antimalarial, insecticidal, and neuroprotective activities [53]. Up to now, 35 eudesmane-type sesquiterpenes have been reported within this genus. Their structures and detailed information are shown in Figure 3 and Table 15.

Figure 3.

Figure 3

Chemical structures for compounds 76110.

Table 15.

The compound name, molecular formula, and NMR test reagent of eudesmane sesquiterpenes.

No. Compound Name Molecular Formula Solvent Ref.
76 1β-Hydroperoxygermacra-4(15),5,10(14)-triene C15H24O2 CDCl3 [12]
77 Selin-11-en-4α-ol C15H26O CDCl3 [54]
78 4α-Hydroxy-4β-methyldihydrocostol C15H26O2 CDCl3 [55]
79 Cyperusol C C15H26O2 CDCl3 [56]
80 1β,4β-Dihydroxyeudesman-11-ene C15H26O2 CDCl3 [57]
81 α-Dictyopterol C15H24O CDCl3 [58]
82 1β,6α-Dihydroxy-4(15)-eudesmane C15H26O3 CDCl3 [59]
83 1-oxo-5α,7αH-eudesma-3-en-15-al C15H22O2 CDCl3 [60]
84 1β-Hydroxy-α-cyperone C15H22O2 CDCl3 [61]
85 (-)-α-Cadinol C15H26O CDCl3 [62,63]
86 T-Cadinol C15H26O CDCl3 [63,64]
87 10-Hydroxyl-15-oxo-α-cadinol C15H24O2 CDCl3 [65,66]
88 15-oxo-T-cadinol C15H24O2 CDCl3 [66]
89 Ainsliaea acid B C15H18O4 CD3OD [67]
90 4-Acrylic-6-methyl-α-tetralone C14H14O3 CDCl3 [67]
91 4α-Hydroxy-12-acetoxy-eudesm-11(13)-en C17H28O3 [68]
92 4α-Hydroxy-eudesm-11-en-12-isovaleroxyl C20H34O3 CDCl3 [34]
93 Ainsliatone A acid C14H20O5 CD3OD [42]
94 Ainsliatone B C15H22O5 CDCl3 [31]
95 Ainslide B C17H26O3 CDCl3 [7]
96 Spicatene C C20H32O3 CDCl3 [8]
97 6,11-Diacetoxy-1,4-dihydroxyeudesmane C19H32O6 CD3OD [40]
98 Alatoside N C20H34O6 CD3OD [42]
99 Alatoside M C21H32O8 CD3OD [42]
100 Ainsliaside C C21H36O8 C5D5N [69]
101 Ainsliaside D C21H36O8 C5D5N [69]
102 Ainsliaside E C21H38O9 C5D5N [69]
103 Alantolactone C15H20O2 CDCl3 [70]
104 Isoalantolactone C15H20O2 CDCl3 [70]
105 Pertyolides B C17H24O4 CDCl3 [39]
106 Pertyolides A C17H24O4 CDCl3 [39]
107 Ainsliatone A C14H18O4 CDCl3 [71]
108 4(15)-En-eudesma-6,12-olide-15-O-β-D-glucopyranoside C21H32O8 CD3OD [40]
109 Ixerin W C22H30O7 C5D5N [27]
110 3(4)-En-eudesma-6,12-olide-15-O-β-D-glucopyranoside-O-β-D-glucopyranoside C21H32O8 CD3OD [40]

4.1. NMR Data of Eudesmane-Type Sesquiterpene (76110)

The 1H and 13C spectrum data are shown in Table 16, Table 17, Table 18, Table 19 and Table 20. An overview of the testing instruments used for the NMR data of compounds 76110 is provided. The NMR data for compounds 82 and 87 were measured with the Bruker DRX-500 spectrometer (Bruker, Germany). The 1H and 13C spectra of compounds 85 and 86 were obtained by the JEOL MN 100 instrument (JEOL, Japan). For compounds 87 and 88, NMR data were recorded on the Bruker AM 400 spectrometer (Bruker, Switzerland). The NMR data for compounds 93, 98, and 99 were taken with the Varian 500 (Varian, Palo Alto, CA, USA) and Bruker AV500-III instruments (Bruker, Switzerland). Compounds 97, 108, and 110 had their NMR data obtained on the Bruker AV-600 spectrometer (Bruker, Switzerland). The 1H and 13C data of compounds 100, 101, 102, and 109 were measured using the JEOL FX-90Q instrument (JEOL, Japan). The NMR data for compounds 100, 101, and 102 were recorded by the GSX-270 (JEOL, Japan) and GSX-500 NMR instruments (JEOL, Japan). The 1H and 13C spectra of compounds 103 and 104 were analyzed using the Bruker Avance DRX 500 spectrometer (Bruker, Germany). NMR data for compounds 76, 77, 79, 80, 83, 85, 92, 94, 95, and 96 were obtained from various instruments including Bruker AMX 500 (Bruker, Zurich, Switzerland) and Varian Unity Inova 500 (Varian, Palo Alto, CA, USA), Bruker DRX-300 (Bruker, Karlsruhe, Germany), JEOL JNM LA-500 (JEOL, Japan), Varian Mercury-300 BB (Varian, San Jose, USA), Varian Mercury Plus 400 (Varian, USA), NT-200 (University of California, Davis, CA, USA), Bruker Advance 500 (Bruker, Germany), Bruker Avance 600 (Bruker, Biel, Switzerland), Bruker AV-400 HD (Bruker, Byersbin, Switzerland), Bruker Ascend 500 (Bruker, Zurich, Switzerland), and other instruments. Compound 78 was measured at 200 MHz for 1H NMR. Compounds 84 and 107 were tested at 400 MHz. Compounds 89 and 90 were recorded at 600 MHz. Compound 91 was run at 60 MHz. Compounds 105 and 106 were operated at 500 MHz. No test instrumentation has been reported in the literature regarding NMR spectrum data for compound 81. Furthermore, no hydrogen spectrum data of compound 86 have been reported in the existing literature. The carbon spectrum data for compound 84 were measured at 50.32 MHz; the 13C data collection for compound 107 occurred at 100 MHz; compound 86 was recorded at 75 MHz for 13C NMR; while the carbon spectrum data of compounds 89 and 90 were measured at 150 MHz. Compounds 78, 91, 105, and 106 have not been described within any available literature concerning their 13C NMR spectra.

Table 16.

1H-NMR data of compounds 7684.

NO. 76 [12] 77 [54] 78 [55] 79 [56] 80 [57] 81 [58] 82 [59] 83 [60] 84 [61]
CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3
1 4.15, dd, 12.0, 3.5 3.32, dd, 11.2, 4.4 3.27, dd, 11.4, 4.8 3.49–3.56, m 3.43, dd, 11.7, 4.6 3.83, dd, 13, 5.5
2α 2.05, m 1.62, m 1.96, m 1.45–1.55, m 1.86, m 2.54, m 2.64, dd, 16.5, 5.5
2β 1.72, m 1.91, m 1.55, m 2.56, dd, 16.5, 13
3α 2.27, ddd, 2.5, 5.5, 13.0 1.52, ddd, 13.5, 12.0, 3.5 1.16, m 5.26, s 2.07, m 6.64, br d, 5.2
3β 2.46, td, 13.0, 5.0 1.79, ddd, 12.0, 3.5, 3.0 1.09, m 2.33, m
5 6.04, d, 16.0 1.81, dddd 1.28, m 1.24, dd, 9.6, 3.6 1.10–1.38, m 1.75, m 2.21, dd, 10.8, 4.8
6α 5.46, dd,16.0, 10.5 1.26, m 1.27, m 1.10–1.38, m 1.44, m 2.19, ddd
6β 1.84, m 1.22, m 3.72, dd, 9.8, 9.8 1.87, m 2.08, ddd, 14, 12, 1.5
7 1.5–1.86, 2.62, m 1.96, dddd, br 1.94, m 1.58, m 1.84–1.92, m 1.28, m 1.81, m 2.02, br dddd, 13.5, 12, 3.5, 2.5
8α 1.5–1.86, 2.62, m 1.61, m 1.78, m 1.84–1.92, m 1.53, m 1.58, m 1.75, m
8β 1.38, dddd, 17.0, 13.5, 13.0, 3.5 1.71, m 1.21, m 1.59, dddd, 13.5, 13.5, 13.5, 3.5
9α 1.5–1.86, 2.62, m 1.13, ddd, 13.5, 13.0, 4.0 1.88, m 1.84–1.92, m 1.17, m 2.43, ddd, 14.4, 10.8, 3.6 1.35, ddd, 13.5, 13.5, 4
9β 1.90, ddd, 13.5, 3.5, 3.5 1.86, m 1.92, m 2.86, ddd, 14.4, 5.4, 5.4 2.16, ddd, 13.5, 3.5, 3
11 1.5–1.86, 2.62, m 2.24, m 1.67, m
12α 0.83, d, 6.5 4.12, s 4.72, m 4.74, br s 4.71, s 0.95, d, 6.9 0.94, d, 6.8 4.78, m
12β 4.71, br s
13α 0.92, d, 6.5 1.75, s 5.00, d, 1.4 0.89, s 1.76, s 1.73, s 0.87, d, 7.1 0.94, d, 6.8 1.78, dd
13β 4.90, d, 1.0
14α 5.21, br s 1.12, s 0.88, s 1.75, s 1.05, s 1.58, s 0.71, s 1.33, s 1.18, s
14β 5.34, br s
15α 4.89, br s 0.89, s 1.09, s 1.11, s 1.16, s 0.76, s 5.02, s 9.35, s 1.73, d, 1
15β 4.97, br s 4.74, s

Table 17.

1H-NMR data of compounds 8592.

NO. 85 [63] 86 [63] 87 [66] 88 [66] 89 [67] 90 [67] 91 [68] 92 [34]
CDCl3 CDCl3 CDCl3 CDCl3 CD3OD CDCl3 CDCl3
1α 2.16, m 2.24, m 2.34, m 7.97, d, 8.0 1.36–1.46, overlapped
1β 1.21, m 1.21, m 1.69, m 1.12, m
2α 2.06, m 2.06, m 1.65, m 7.17, d, 8.0 1.53–1.62, overlapped
2β 2.46, m 2.45, m 1.80, m
3α 1.77–1.81, m
3β 1.36–1.46, overlapped
4 5.29, br s 5.42, br s 6.87, s 6.94, s 4.99, br s 6.96, br s
5 2.01, m 2.04, m 2.75, br s 1.21–1.29, overlapped
6α 1.20, m 1.20, m 2.88, d, 12.0 4.25, br s 1.89–1.94, m
6β 1.21–1.29, overlapped
7α 1.72, m 1.55, m 2.26, m 2.33, m 2.02–2.06, m
7β 1.23, m 1.27, m 1.99, m 2.29, m
8α 1.45, m 1.47, m 6.90, m 2.56, m 1.53–1.62, overlapped
8β 1.84, m 1.78, m 2.64, m 1.36–1.46, overlapped
9α 1.21–1.29, overlapped
9β
10 1.36, m 1.35, m 2.96, br s
11 1.66, br s 1.61, br s 2.21, m 2.35, m
12α 0.85, d, 6.8 0.87, d, 6.9 6.34, br s 6.51, br s 4.55–4.63, m
12β 5.54, br s 5.23, br s
13α 0.91, d, 7.2 0.90, d, 6.9 0.98, d, 6.8 0.97, d, 6.9 5.03 5.03, d, 1.4
13β 4.6 4.98, s
14 0.78, d, 7.2 0.78, d, 6.9 1.14, s 1.24, s 2.36, s 0.90, s 0.89, s
15 1.05, s 1.15, s 9.43, s 9.43, s 1.60, s 1.09, s 1.10, s
1′
2′ 2.06, s 2.23, d, 7.2
3′ 2.10–2.17, m
4′ 0.96, d, 6.6
5′ 0.96, d, 6.6

Table 18.

1H-NMR data of compounds 93100.

NO. 93 [42] 94 [31] 95 [7] 96 [8] 97 [40] 98 [42] 99 [42] 100 [69]
CD3OD CDCl3 CDCl3 CDCl3 CD3OD CD3OD CD3OD C5D5N
1α 3.80, dd, 10.0, 5.0 3.86, dd, 11.7, 5.1 3.43, dd, 11.6, 4.6 3.43, dd, 11.6, 4.6 3.12, dd, 11.0, 3.4 3.58, dd, 11, 4
1β
2α 2.08, m 1.89, m 1.78–1.87, m 1.57, m 1.46, m 5.30, br s 5.31, br s
2β 1.84, m 2.14, m 1.55–1.60, m 1.82, m 1.93, m
3α 2.21, m 2.42, m 2.32, ddd, 13.6, 4.9, 2.2 2.10, m 1.49, m 2.00, m 2.03, m
3β 2.53, m 2.06–2.17, m 2.32, m 1.58, m 2.40, m 2.41, m
4 3.67, dd, 10.0, 6.5 3.72, dd, 10.0, 6.5
5 1.64, m 2.24, d, 9.9 1.75–1.82, m 1.77, m 0.96, br s 2.84, d, 6
6α 1.67–1.74, m 1.25, m 5.78, s 1.25, m 1.26, m 4.92, br t, 5.5
6β 4.14, t, 10.0 4.22, dd, 10.2, 9.9 1.39–1.46, m 1.67, m 2.37, m 2.40, m
7 2.41, m 2.54, m 1.98–2.08, m 2.00, m 2.11, d, 13.6 1.95, m 2.02, m
8α 1.64, m 1.67, m 1.64–1.71, m 1.35, m 1.56, m 1.57, m 1.50, m
8β 1.74, m 1.33–1.40, m 1.69, m 1.87, m 1.72, m 1.67, m
9α 1.36, m 1.40, m 1.97, t, 3.3 1.21, m 1.09, m 1.25, m 1.26, m
9β 1.81, m 1.87, m 1.17–1.27, m 1.98, m 1.96, m 1.72, m 1.84, m
10 2.02, m 2.04, m
11 1.13, d, 7.0
12 4.59, s 4.59, s 1.41, s 1.58, s 1.57, s
13α 6.23, s 6.27, br s 5.07, d, 0.9 5.10, br s 1.45, s 0.81, s 5.58, s 1.58, s
13β 5.67, s 5.69, br s 5.02, s 5.00, br s 6.14, s
14 0.76, s 0.88, s 0.71, s 0.71, s 1.31, s 1.58, s 1.08, s
15α 4.77, d, 1.5 4.50, br s 1.28, s 0.85, s 5.03, br s
15β 4.50, d, 1.5 4.77, br s 5.17, br s
1′ 3.76, s 4.30, d, 7.5 4.30, d, 8.0 5.09, d, 8
2′ 2.10, s 2.23, m 1.98, s 3.14, m 3.14, m 3.96, t, 8.5
3′ 2.13, m 3.31, m 3.30, m 4.20, t, 9
4′ 0.97, d, 6.6 3.27, m 3.27, m 4.24, t, 9
5′ 0.97, d, 6.6 3.22, m 3.25, m 3.77, m
6′α 3.67, dd, 12.0, 6.5 3.65, dd, 12.0, 6.5 4.34, dd, 12, 4
6′β 3.85, dd, 11.5, 2.0 3.85, dd, 11.5, 2.0 4.37, dd, 12, 2

Note: The 1H-NMR data of 2″ of compound 97 were 1.98, s.

Table 19.

1H-NMR data of compounds 101110.

NO. 101 [69] 102 [69] 103 [70] 104 [70] 105 [39] 106 [39] 107 [71] 108 [40] 109 [27] 110 [40]
C5D5N C5D5N CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CD3OD C5D5N CD3OD
1α 3.78, dd, 8, 7 3.63, dd, 10, 5 1.40–1.82, m 1.50–2.20, m 1.15, m 1.23, m 3.96, dd, 11.0, 4.8 1.38, m 5.46, dd, 10, 2 1.52, m
1β 1.62, m 1.53, m 1.45, m 1.44, dd, 13.1, 7.0
2α 1.40–1.82, m 1.50–2.20, m 1.40, m 1.26, m 1.91, m 1.55, m 5.86, dd, 10, 3 2.15, m
2β 1.80, m 1.60, m 2.21, m 2.20, m
3α 5.43, br s 1.40–1.82, m 1.50–2.20, m 1.56, m 2.00, m 2.40, m 1.53, m 6.36, br s 5.81, s
3β 2.34, m 2.51, m 3.00, d, 11.7 6.36, br s 5.81, s
4 2.43, m 2.46, m
5 3.25, br s 2.66, d, 3 2.34, m 1.81, d, 12.4 2.62, d, 11.0 2.08, d, 11.0 2.55, br d, 11 2.33, d, 10.5
6α 4.91, t, 3 5.09, t, 3 5.13, d, 8 1.71, m 4.94, d, 3.5 1.06, q, 12.4 4.06, t, 11.0 4.22, overlapped 4.25, t, 10.5
6β 1.24, m 1.42, m 4.11, t, 11.0
7 3.56, m 2.97, m 3.01, dd, 5.4, 3.5 2.38, m 2.45, m 1.65, overlapped 2.50, m 1.61, m
8α 4.80, m 4.48, m 5.13, dt, 5.4, 3.0 5.04, m 1.59, m 1.79, m 1.81, d, 11.7
8β 2.10, m 1.58, m 1.63, m
9α 2.09, dd, 6, 6 1.99, m 2.14, dd, 14.9, 3.0 1.46, dd, 15.6, 4.5 1.50, m 1.55, m 1.36, d, 11.2
9β 1.53, m 1.39, m 1.51, dd, 14.9, 3.0 2.20, dd, 15.6, 2.6 2.06, m 1.35, m 1.58, m
11 2.43, dq, 10.6, 6.9 2.37, m
12 1.49, s 1.52, s
13α 1.61, s 1.63, s 6.17, d, 4 6.11, d, 2 2.65, d, 17.5 2.64, d, 17.5 5.41, d, 3.0 1.15, d, 6.9 5.36, d, 3.1 1.16, d, 6.8
13β 5.60, d, 4 5.57, d, 2 2.95, d, 17.5 3.02, d, 17.5 6.09, d, 3.0 6.15, d, 3.2
14 1.20, s 1.33, s 1.17, s 0.82, s 1.22, s 0.78, s 0.86, s 0.88, s 0.92, s 0.97, s
15α 2.15, br s 1.47, s 1.07, s 4.76, d, 3 1.13, d, 7.7 4.79, s 6.16, br s 5.18, br s 4.38, d, 11.7
15β 4.43, d, 3 4.43, s 5.13, br s 4.15, d, 11.7
17 2.33, s 2.34, s
1′ 5.15, d, 8 5.30, d, 8 4.48, d, 7.7 5.06, d, 7 4.39, d, 7.7
2′ 4.01, t, 8.5 4.01, t, 8.5 3.28, m 3.17, m
3′ 4.25, t, 8.5 4.19, t, 9 3.35, m 3.33, m
4′ 4.20, t, 9 3.94, t, 9 3.35, m 3.28, m
5′ 3.92, m 4.06, dt, 8, 2 3.28, m 3.25, m
6′α 4.31, dd, 12, 5 4.16, dd, 11, 8.5 3.84, dd, 12.1, 2.3 3.86, dd, 11.9, 2.0
6′β 4.42, dd, 12, 2 4.67, dd, 11, 1.5 3.69, dd, 12.1, 5.0 3.67, dd, 11.9, 5.1

Table 20.

13C-NMR data of compounds 76110.

NO. 76 [12] 77 [54] 78 [55] 79 [56] 80 [57] 82 [59] 83 [60] 84 [61] 85 [62] 86 [64] 87 [65] 88 [66] 89 [67] 90 [67] 92 [34] 93 [42] 94 [31]
CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CD3OD CDCl3 CDCl3 CD3OD CDCl3
1 89.9 43.3 42.2 79.3 79.7 79.1 212.2 74.4 21.9 22.6 21.3 21.2 26.5 127.5 41 77.3 77.2
2 29.3 20.1 20.1 28.5 25.6 31.9 38.9 42.4 30.9 30.9 22.2 22 27.4 128.6 20.1 31.6 30
3 30.7 44.6 43.5 40.8 39.5 35.1 158.6 197.5 135 134.3 142.4 141.1 138.2 145.1 43.4 40.6 39.2
4 146.4 72.2 72.2 71.6 71.3 146.1 143.7 129.5 122.3 122.6 151.6 152.8 119.6 129.6 72.1 212.6 212.1
5 129.6 54.9 55 52.9 50.4 55.9 53.1 161.9 39.8 37.7 41.4 39.3 38 142 54.9 62.2 61.3
6 138.1 26 27.3 25.7 26.4 67 25 32.8 46.7 46.6 45.6 45.6 38.9 40.4 26.2 67.6 67.5
7 52.7 46.3 41.1 45.7 46.1 49.3 55.8 45.1 22.7 19.8 22.1 26.4 26.6 27.5 42.6 48.4 46
8 35.6 26.8 26.6 26.4 26.8 18.1 26.8 26.5 42.2 40.3 41.8 40 140.8 35 27.1 28.1 26.6
9 36.5 41 44.7 40.5 39.3 36.3 35.1 37.7 72.4 70.7 72.1 70.6 134 198.1 44.6 37.5 36
10 148 34.6 34.7 38.9 38.9 41.7 59.6 41.3 50 47.9 49.6 47.6 36.1 130.5 34.6 45.7 43.8
11 31.9 150.7 154.1 150.3 150.6 26 32.3 148.9 25.9 26.1 26.2 28.6 143.8 144.7 148.8 125.9 141.9
12 20.5 108.1 65.3 108.3 108.6 21.1 19.4 109.4 21.1 21.4 21.4 21.2 124.9 130.7 65.8 170.5 167.6
13 20.7 22.7 107.9 21 20.7 16.2 21.9 20.6 15.1 15.2 15.2 15.2 170.5 171.3 110.7 144.1 125
14 114.6 18.6 18.7 13 12.5 11.6 19.6 16.3 20.8 28.4 20.5 19.9 171.5 21.9 18.7 12.2 11.9
15 113.2 21 22.7 22.7 29.7 107.8 192.7 11 23.8 23.7 194.5 194.6 23.9 22.7
1′ 172.8 51.9
2′ 43.5
3′ 25.7
4′ 22.4
5′ 22.4
NO. 95 [7] 96 [8] 97 [40] 98 [42] 99 [42] 100 [69] 101 [69] 102 [69] 103 [70] 104 [70] 105 [39] 106 [39] 107 [71] 108 [40] 109 [27] 110 [40]
CDCl3 CDCl3 CD3OD CD3OD CD3OD C5D5N C5D5N C5D5N CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CD3OD C5D5N CD3OD
1 79.4 79.4 81.2 136.3 136.2 79.4 76.6 79 41.7 42.5 42.3 42.2 76.4 43.2 127.1 38.7
2 31.6 31.6 27.6 120.6 120.6 33.3 34.3 29.9 16.7 22.7 16.9 22.8 30.5 22.7 138.3 23.9
3 34.3 34.3 42.3 29 29.9 33.8 122 42.5 32.7 36.8 32.9 36.9 38.6 26.7 76.2 128.2
4 148.6 148.8 72.1 82.2 82.2 148.5 136.3 72.3 37.5 148.9 38.7 149.4 206.3 118.1 141.1 134.4
5 47.7 47.7 54.6 37.9 37.9 53.2 53.6 59.4 149 46.2 152.8 46.7 58.4 53 49 49.9
6 27 27 70 36.3 36.5 78 79.9 80.9 118.8 27.5 113.7 21.2 76.6 81.1 77.3 82.8
7 41.5 41.6 51.1 42.5 41.3 45.4 44.8 45.5 39.4 40.5 47.1 47 48.9 54.1 51.7 55.1
8 29.3 29.3 20.1 25.3 28.1 19.8 17.8 18.1 76.4 76.6 77.2 77.7 20.9 24.1 20.4 23.9
9 37 37.1 40.7 29.8 30.2 36.4 30.8 34.6 42.6 41.3 42.7 41.4 36.1 41 39.5 40.7
10 40.4 40.4 41 48.3 37.9 41.2 38.8 40.4 32.6 34.3 33.1 34.7 45.5 39.4 35.7 36.9
11 148.7 148.6 85.9 14.7 147.9 72.9 72.4 72.1 139.8 142.2 79.2 79.7 138.3 42.2 139.1 41.9
12 66.4 66.1 24.6 21 170.9 29.6 30.2 30.4 170.3 170.5 175.5 175.5 170.2 182.1 169.4 182.4
13 111.3 111.2 25.6 10.7 123 31.3 30.7 30.7 121.5 119.9 43.6 42.2 117.2 12.6 115.1 12.6
14 10.4 10.4 14.3 21 15.7 12.6 16.5 22.5 17.6 28.8 18 12.3 18.3 19.6 17.7
15 107.2 107.2 29.8 10.9 107.2 23.1 23.8 28.5 106.6 23.2 106.5 139.1 107.5 73.4
16 210.4 210.5
17 32 32
1′ 171 173 172.5 101.5 101.5 104.4 105.6 105.6 104.5 104.2 103.8
2′ 21.2 43.7 22.2 75.2 75.2 75.2 74.1 75.2 74.9 74.4 75.3
3′ 25.9 78.2 78.2 78.8 78.7 78.8 78.2 77.5 78.3
4′ 22.6 71.9 71.9 71.5 71.8 72.4 71.2 70.8 71.7
5′ 22.6 77.8 77.8 78.3 78.3 78.5 78 77.5 77.8
6′ 63 63 62.6 62.8 63 62.4 61.8 62.8

Note: The 1″ and 2″ data of compound 97 were 172.7 and 22.5.

4.2. Bioactivity of Eudesman-Type Sesquiterpene

Eucalyptane sesquiterpenes exert anti-inflammatory effects by inhibiting the activity of the NLRP3 inflammasome and inhibiting the production of NO in RAW264.7 macrophages. Cyperusol C (79) derived from Ainsliaea pertyoides can inhibit NLRP3 inflammasome activity by inhibiting the LDH release rate [7]. Ainsliatone B (94) strongly inhibited the production of nitric oxide in RAW264.7 macrophages stimulated with lipopolysaccharide (LPS), with IC50 values of 8.78 µM [31].

Isoalantolactone (104) remarkably inhibited the proliferation of MGC803 cell lines with IC50 values of 2.2 ± 0.2 μM. Double-bond moieties may be necessary for its cytotoxicity [34]. Alantolactone (103) exhibited significant inhibition against the human tumor cell lines A549, HCT116, MGC803, and CCRF-CEM with IC50 values of 3.56, 2.23, 2.89, and 14.67 µM, respectively [39].

5. Polymer Sesquiterpene Lactones

In Ainsliaea plants, polymer sesquiterpene lactones are typically formed through the polymerization of two or three sesquiterpene units; most monomeric precursors belong to guaiane sesquiterpenes. The structures of the 25 reported polymer sesquiterpene lactones can be found in Figure 4 and Table 21.

Figure 4.

Figure 4

Figure 4

Chemical structures for compounds 111135.

Table 21.

The compound name, molecular formula, and NMR test reagent of polymer sesquiterpene lactones.

No. Compound Name Molecular Formula Solvent Ref.
111 Macrocephadiolide B C30H34O8 CD3OD [72]
112 Ainsliadimer J C30H34O7 CDCl3 [72]
113 Ainsliadimer A C30H34O7 CDCl3 [73]
114 Macrocephadiolide A C30H32O8 CDCl3 [72]
115 Japonicone A C32H40O7 CDCl3 [74]
116 Ainsliadimer B C30H32O8 CDCl3 [75]
117 Ainsliadimer C C30H36O7 CDCl3 [31]
118 Ainsliadimer D C30H36O8 DMSO [31]
119 Gochnatiolide A C30H30O7 CDCl3 [76,77]
120 Ainsliadimer F C31H36O6 CDCl3 [47]
121 Ainsliadimer I C31H34O6 CDCl3 [47]
122 Ainsliadimer G C32H36O7 CDCl3 [47]
123 Ainsliadimer H C33H38O7 CDCl3 [47]
124 Gochnatiolide C C30H30O6 CDCl3 [76]
125 Gochnatiolide B C30H30O7 CDCl3 [76]
126 Gochnatiolide E C30H30O8 CDCl3 [78]
127 Gochnatiolide F C30H34O7 CDCl3 [78]
128 Macrocephatriolide B C45H50O10 CDCl3 [79]
129 Macrocephatriolide A C45H46O10 CDCl3 [79]
130 Ainsliatriolides A C45H48O10 CDCl3 [80]
131 Ainsliatriolide C C45H48O11 CDCl3 [81]
132 Ainsfragolide C45H46O10 CDCl3 [78]
133 Ainsliatrimer A C45H44O10 CDCl3 [75]
134 Ainsliatrimer B C45H44O10 CDCl3 [75]
135 Ainsliatriolides B C46H50O11 CDCl3 [80]

5.1. NMR Data of Polymer Sesquiterpene Lactones (111135)

The 1H and 13C NMR spectroscopy are summarized in Table 22, Table 23, Table 24, Table 25 and Table 26. This paper also provides an overview of the nuclear magnetic resonance testing instruments used for compounds 111135. The 1H and 13C spectra of compounds 111, 112, 114, 130, and 131 were measured using the Bruker Avance III-500 instrument. The NMR data for compounds 113, 117, 118, 120, 121, 122, and 123 were recorded on the Bruker Avance 600 spectrometer. For compounds 115 and 116, the respective 1H and 13C spectra were obtained by the Bruker Avance 400 instrument. Compound 119’s NMR data were acquired on the Bruker AC 200 spectrometer. NMR data for compounds 119, 124, and 125 were acquired using the Bruker AV500 instrument. The 1H and 13C data of compounds 126, 127, and 132 were taken with the Bruker Avance AV500 spectrometer. Data for compounds 128, 129, and 135 were performed on the Bruker Avance III-600 instrument. NMR data collection for compounds 133 and 134 was conducted using the Bruker Avance 400 instrument.

Table 22.

1H-NMR data of compounds 111118.

NO. 111 [72] 112 [72] 113 [73] 114 [72] 115 [74] 116 [75] 117 [31] 118 [31]
CD3OD CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 DMSO
1 3.24, dd, 8.0, 2.3 3.09, ddt, 20.6, 7.7, 4.2 3.15, dd, 12.0, 11.4 3.11, dd, 17.0, 7.0 3.28, dd, 11.7, 3.8
2α 2.63, m 2.64–2.54, m 2.38, dd, 13.8, 12.0 2.68, m 1.82, m
2β 2.43, m 2.29, tdt, 10.8, 5.0, 3.0 1.88–1.92 1.62, m
3α 1.65, m
3β 1.57, m
4 2.40, m 2.29, tdt, 10.8, 5.0, 3.0 2.45, m 2.68, m 2.50, m 2.37, m
5 2.54, q, 9.4 2.43–2.35, m 2.55, t, 11.4 2.53, t, 10.0 3.33, dd, 9.8, 4.3 2.78, dd, 11.4, 4.2 3.37, dd, 11.4, 4.8
6 4.08, t, 9.2 3.95, t, 9.2 4.07, dd, 11.4, 9.0 4.09, dd, 10.0, 8.8 5.37, d, 3.0 4.35, t, 9.8 4.29, t, 10.8 4.39, t, 10.8
7 3.16, m 2.92–2.81, m 2.72, m 2.95, tt, 8.8, 3.0 2.79, dd, 5.5, 3.2 2.80, m 1.82, overlap 2.84, m
8α 2.38, m 2.12–1.91, m 2.22–2.24, m 2.34, m 2.05, m 2.00, overlap 2.04, m
8β 1.49, m 1.55–1.41, m 1.37, dq, 12.6, 6.0 1.49, m 4.89, dd, 5.3, 2.7 2.10, m 1.82, overlap 1.90, m
9α 2.63, m 2.64–2.54, m 2.67, m 2.71, m 2.59, dd, 14.8, 3.3 1.88, m 2.00, overlap 1.68, m
9β 2.29, td, 12.5, 5.7 1.76, ddd, 14.0, 11.6, 5.0 1.88–1.92 2.16, td, 12.8, 5.0 1.53, dd, 15.1, 2.0 2.05, m 1.72, m 1.81, overlap
11 2.36, m
13α 6.20, d, 3.2 6.26, dd, 5,1, 3.4 6.19, d, 3.0 6.26, d, 3.2 2.00, m 5.53, d, 3.0 1.27, d, 7.2 6.01, d, 3.0
13β 5.68, d, 3.2 5.55, dd, 5.3, 3.1 5.46, d, 3.0 5.57, d, 3.2 1.88, m 6.21, d, 3.0 5.62, d, 3.0
14α 5.00, s 5.05, d, 1.1 5.15, s 5.20, s 1.19, s 1.95, m 1.82, overlap 1.81, overlap
14β 4.69, s 4.69, s 5.03, s 4.84, s 1.70, m 1.69, m 1.54, m
15α 2.09, m 2.12–1.91, m 2.25–2.30 2.16, m 1.11, d, 7.6 3.94, dd, 11.0, 4.0 1.28, d, 7.2 3.88, m
15β 1.90, m 1.65–1.56, m 2.16–2.21 3.62, m
1′ 3.22, m 2.96, ddq, 12.0, 9.3, 3.2 3.04–3.06 2.97, q, 9.6 3.22, m 3.18, t, 9.0 3.27, t, 9.0
2′α 2.61, dd, 16.2, 5.5 2.50–2.46, m 2.91, dd, 16.8, 9.6 3.25, dd, 15.6, 10.2 4.60, s 3.23, m 3.22, m 3.27, overlap
2′β 2.46, dd, 16.2, 9.4 2.29, tdt, 10.8, 5.0, 3.0 2.45, d, 16.8 2.68, m 2.66, m 2.62, d, 18.6 2.49, overlap
3′ 2.86, d, 1.4
5′ 3.26, m 3.09, ddt, 20.6, 7.7, 4.2 3.04–3.06 2.53, t, 10.1 3.20, m 3.12, t, 9.6 2.89, t, 9.6
6′α 3.03, d, 15.5
6′β 4.39, t, 9.5 4.27, dd, 11.0, 8.8 4.12, dd, 10.2, 8.4 4.82, dd, 10.1, 9.0 2.08, m 4.12, t, 10.5 4.14, t, 9.6 4.25, t, 9.6
7′ 3.07, m 2.92–2.81, m 3.04–3.06 2.89, ddd, 11.9, 9.0, 3.1 2.82, s 3.01, m 2.07, m 3.18, m
8′α 2.30, m 2.12–1.91, m 2.25–2.30 1.56, m 1.49, m 2.19, overlap 2.27, m
8′β 1.53, m 1.55–1.41, m 1.50, dq, 12.6, 3.6 2.28, m 4.21, ddd, 12.4, 8.4, 3.2 2.30, m 1.40, m 1.45, m
9′α 2.55, m 2.50–2.46, m 2.16–2.21 2.06, m 2.36, dt, 13.1, 4.1 2.21, m 2.58, m 2.49, br s
9′β 2.32, m 2.19, td, 12.5, 5.7 2.57, m 2.68, m 2.00, m 2.62, m 2.12, overlap 2.16, m
10′ 2.15, m
11′ 2.19, overlap
13′α 6.18, d, 3.2 6.26, dd, 5,1, 3.4 6.31, d, 3.0 6.33, d, 3.2 6.22, d, 3.3 5.57, d, 3.0 1.24, d, 6.6 6.04, d, 3.0
13′β 5.67, d, 3.2 5.55, dd, 5.3, 3.1 5.61, d, 3.0 5.57, d, 3.2 5.54, d, 3.1 6.26, d, 3.0 5.68, d, 3.0
14′α 5.05, s 5,14, s 4.96, s 5.19, s 1.05, d, 7.3 5.09, s 5.06, s 5.83, s
14′β 4.99, s 4.99, s 4.59, s 5.10, s 4.73, s 4.70, s 5.03, s
15′α 2.97, ddd, 18.3, 9.0, 5.3 2.72, ddd, 13.2, 4.8, 3.0 2.05, dd, 14.4, 5.4 2.80, m 1.67, d, 1.5 2.15, m 2.12, overlap 2.20, m
15′β 2.74, ddd,18.3, 9.0, 6.2 2.64–2.54, m 2.01, dd, 14.4, 7.8 2.25, m 2.06, m 2.05, m 1.85, m

Note: The 1H-NMR data of 2″ of 115 were 2.08, s.

Table 23.

1H-NMR data of compounds 119127.

NO. 119 [76] 120 [47] 121 [47] 122 [47] 123 [47] 124 [76] 125 [76] 126 [78] 127 [78]
CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3
4 2.52, dd, 7.2, 4.2 2.56, dd, 7.1, 4.2 2.63, m 2.62, m 2.46, m
5 3.92, d, 10.4 2.80, dd, 11.1, 4.1 2.91, dd, 11.2, 4.2 3.52, dd, 12.3, 5.3 3.52, dd, 11.3, 4.1 3.55, d, 10.4 3.89, d, 10.8 3.62, d, 10.0 3.03, dd, 1.5, 10.2
6 3.76, t, 9.9 4.32, dd, 11.0, 9.6 4.33, dd, 11.1, 9.7 4.38, dd, 11.2, 9.8 4.36, dd, 11.3, 9.7 3.92, d, 9.9 4.36, t, 10.7 4.59, d, 10.0 3.75
7 3.88, m 1.84, m 2.75, mH 2.87, m 2.86, m 3.23–3.29, m 2.86, m 3.75
8α 2.34–2.44, m 2.05, m 2.10, m 2.16, m 2.11, m 2.32–2.44, m 2.04–2.11, m 3.41 2.39, m
8β 1.60–1.67, m 1.85, m 2.02, m 2.08, m 2.03, m 1.68–1.75, m 2.04–2.11, m 2.66 2
9α 2.06–2.16, m 1.97, m 1.71, m 2.00, m 1.95, m 2.00–2.07, m 2.04–2.11, m 2.22 2.07, m
9β 2.06–2.16, m 1.70, m 1.68, m 1.73, m 1.73, m 1.61–1.68, m 1.84–2.01, m 2.09 2.03
10 2.74, m
11 2.35, m
13α 6.21, d, 3.7 1.27, d, 6.9 6.20, d, 3.2 6.23, d, 3.3 6.21, d, 3.3 6.28, d, 3.4 6.23, d, 3.4 4.43, dd, 13.3, 19.5 6.18, d, 3.2
13β 5.49, d, 3.3 5.52, d, 3.1 5.56, d, 3.0 5.54, d, 3.1 5.57, d, 3.1 5.56, d, 3.1 5.45, d, 3.2
14α 1.87–2.00, m 1.86, m 1.86, m 2.12, m 2.09, m 2.00–2.07, m 1.84–2.01, m 1.95 1.87
14β 1.87–2.00, m 1.69, m 1.69, m 1.94, m 1.93, m 1.84–1.97, m 1.74, m
15α 6.22, br s 1.27, d, 7.1 1.30, d, 7.2 3.94, dd, 9.5, 2.2 3.96, dd, 9.6, 2.3 6.18, br s 6.24, br s 6.26, s 1.23, d, 7.6
15β 6.03, br s 3.74, dt, 9.5, 3.2 3.76, dd, 9.7, 3.1 6.00, br s 6.16, br s 6.05, s
1′ 3.25, t, 9.6 3.22, m 3.22, t, 9.0 3.22, m 3.24, t, 9.3 3.23–3.29, m 3.27, m 3.27 3.17, t, 8.9
2′α 3.37, t, 10.0 3.22, m 3.23, m 3.22, m 2.68, m 3.33–3.40, m 3.38, m 3.32 3.23, m
2′β 2.63, m 2.63, m 2.64, m 2.63, m 2.62, m 2.62–2.66, m 2.70, m 2.68 2.61
5′ 3.34, t, 10.5 3.20, d, 4.9 3.19, t, 8.7 3.25, t, 10.2 3.17, t, 9.3 3.33–3.40, m 3.28, m 3.39 3.11, t, 9.4
6′ 4.24, t, 9.2 4.16, t, 9.4 4.17, t, 9.2 4.19, t, 9.2 4.18, t, 9.8 4.21, t, 9.5 4.21, m 4.26, t, 9.8 4.20, t, 9.4
7′ 3.08, m 3.00, m 3.01, m 3.05, m 3.03, m 3.06, m 3.03, m 3.08, m 2.15
8′α 2.34–2.44, m 2.31, m 2.35, m 2.35, m 2.33, m 2.32–2.44, m 2.34, m 2.35, m 2.20, m
8′β 1.49–1.57, m 1.47, m 1.48, m 1.51, m 1.51, m 1.51, m 1.50, m 1.54, m 1.42, m
9′α 2.66, br s 2.64, m 2.65, m 2.65, m 2.64, m 2.62–2.66, m 2.66, s 2.66 2.57
9′β 2.34–2.44, m 2.20, m 2.22, m 2.24, m 2.23, m 2.26, m 2.25, m 2.26 2.13
11′ 2.25, m
13′α 6.30, d, 3.4 6.26, d, 3.4 6.27, d, 3.4 6.29, d, 3.4 6.27, d, 3.4 6.29, d, 3.4 6.28, d, 3.4 6.29, d, 3.0 1.26, d, 7.0
13′β 5.64, d, 3.1 5.58, d, 3.0 5.58, d, 3.0 5.60, d, 3.0 5.59, d, 3.0 5.60, d, 3.0 5.60, d, 3.1 5.65, d, 3.0
14′α 5.10, s 5.09, br s 5.09, br s 5.12, br s 5.11, br s 5.08, s 5.12, s 5.11, s 5.05, s
14′β 4.71, s 4.72, br s 4.72, br s 4.75, br s 4.74, br s 4.73, s 4.75, s 4.75, s 4.67, s
15′α 2.06–2.16, m 2.13, m 2.11, m 2.12, m 2.12, m 2.00–2.07, m 2.04–2.11, m 2.15 2.1
15′β 1.87–2.00, m 2.02, m 1.97, m 2.07, m 2.07, m 1.84–1.97, m 2.04–2.11, m 1.92 1.85
1″ 3.29, s 3.42, dd, 7.0, 3.5
2″ 1.06, t, 7.0

Table 24.

1H-NMR data of compounds 128135.

NO. 128 [79] 129 [79] 130 [80] 131 [81] 132 [78] 133 [75] 134 [75] 135 [80] NO. 128 [79] 129 [79] 130 [80] 131 [81]
CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3
1 3.06, m 1′ 2.72, m 3.07, dd, 10.6, 5.9 3.28, m 3.28, m
2 2.51–2.58, m 2′α 3.43, q, 7.3 3.36, dt, 8.5, 5.9 3.27, m 3.26, m
4 2.22, m 2.66, m 2′β 2.62, m 2.63, m
5 2.45, m 3.91, d, 10.3 3.23, dd, 11.0, 3.7 3.40, m 3.94, d, 9.0 3.43, d, 10.3 3.87, d, 10.3 3.07, m 5′ 2.47, t, 11.1 3.43, m 3.34, m 3.26, m
6 3.92, t, 9.2 3.76, dd, 10.3, 10.3 4.21, dd, 11.0, 9.8 4.47, t, 10.0 3.80, d, 9.0 3.78, t, 10.3 3.64, t, 10.3 4.48, t, 10.5 6′ 4.32, dd, 11.1, 8.7 4.25, dd, 11.0, 8.6 4.12, t, 9.4 4.12, t, 10.0
7 2.97, m 3.85, m 3.00, m 3.02, m 3.89, m 3.21, m 3.78, m 2.66, m 7′ 2.79, m 2.99, m 3.12, m 3.12, m
8α 2.20, m 2.36, m 2.06, m 2.07, m 2.4 1.82, m 1.80, m 1.91, m 8′α 2.24, m 2.30, m 2.32, m 2.28, m
8β 1.44, m 1.56, m 2.02, m 1.98, m 1.61 2.35, m 2.34, m 1.95, m 8′β 1.50, m 1.46, m 1.48, m 1.48, m
9α 2.56, m 2.05, m 2.05, m 2.03, m 2.08, m 2.00, m 2.05, m 1.67, m 9′α 2.64, m 2.69, m 2.61, m 2.61, m
9β 2.18, m 1.92, m 2.01, m 1.75, m 1.95, m 2.38, m 2.49, m 1.92, m 9′β 1.97, td, 12.8, 4.5 2.18, m 2.27, m 2.21, m
10 2.77, m 13′α 6.23, d, 3.3 6.22, d, 3.2 6.15, d, 3.2 6.17, d, 3.4
13α 6.15, d, 3.2 6.16, d, 3.4 6.15, d, 3.2 6.11, d, 3.2 6.21, d, 3.2 5.57, d, 3.0 5.49, d, 3.4 5.43, d, 3.3 13′β 5.52, d, 3.3 5.58, d, 3.2 5.50, d, 3.2 5.52, d, 3.4
13β 5.49, d, 3.2 5.45, d, 3.4 5.50, d, 3.2 5.47, d, 3.2 5.48, d, 3.2 6.25, d, 3.0 6.19, d, 3.4 6.10, d, 3.3 14′α 5.37, br s 5.18, br s 5.08, br s 5.08, s
14α 4.96, br s 1.98, m 1.84, m 1.84, m 2 2.55, m 2.65, m 1.78, td, 13.9, 3.7 14′β 5.13, br s 5.10, br s 4.71, br s 4.74, s
14β 4.66, br s 1.88, m 1.70, m 1.73, m 1.93, m 1.64, m 1.93, m 1.56, m 15′α 2.04, m 2.28, m 2.18, m 2.13, m
15α 1.98, m 6.17, br s 1.91, m 2.15, m 6.22, br s 5.97, s 5.99, s 2.51, m 15′β 1.85, td, 12.8, 4.7 1.65, td, 14.3, 3.7 2.05, m 2.01, m
15β 1.43, m 5.97, br s 1.84, m 1.86, m 6.02, br s 6.26, s 6.30, s 2.13, m
NO. 132 [78] 133 [75] 134 [75] 135 [80] NO. 128 [79] 129 [79] 130 [80] 131 [81] 132 [78] 133 [75] 134 [75] 135 [80]
CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3
1′ 3.10, m 3.06, m 1″ 3.10, m 3.11, td, 8.7, 4.5 3.06, m 3.09, m 3.14, m 3.14, m 3.13, m
2′α 3.07, m 2″α 2.45–2.55, m 2.56, m 2.48, m 2.47, m 2.6 3.11, m 3.07, m
2′β 3.39, m 2.71, m 2″β 2.43, m 2.46, m 2.29, m 2.48 2.58, m 2.60, m
5′ 3.46, t, 10.7 3.19, d, 10.0 3.17, d, 9.6 3.24, t, 9.3 4″ 2.62, m 2.52, m 2.29, m 2.29, m 2.55
6′ 4.29, dd, 10.7, 8.7 4.36, t, 10.0 4.35, t, 9.6 4,23, t, 9.3 5″ 2.55, m 2.40, m 2.51, m 2.52, m 2.44 2.95, m 2.94, t, 9.6 2.37, m
7′ 3.04 2.65, m 2.65, m 2.89, m 6″ 3.96, t, 9.1 3.98, dd, 9.3, 9.3 3.94, t, 9.1 3.89, t, 10.0 4.02, t, 9.2 4.22, t, 9.5 4.22, t, 9.6 4.19, dd, 11.3, 8.8
8′α 2.32 1.99, m 1.99, m 1.50, m 7″ 3.04 2.96, m 2.96, m 3.03, m 2.99 2.99, m 3.00, m 2.77, m
8′β 1.5 2.15, m 2.08, m 2.31, m 8″α 2.19, m 2.29, m 2.27, m 2.16, m 2.33 1.50, m 1.52, m 1.56, m
9′α 2.73, m 1.80, m 1.78, m 2.16, m 8″β 1.47, m 1.46, m 1.41, m 1.39, m 1.5 2.34, m 2.31, m 2.18, m
9′β 2.22 1.94, m 2.10, m 2.66, m 9″α 2.56, m 2.55, m 2.56, m 2.57, m 2.59 2.20, m 2.31, m 2.27, m
13′α 6.27, d, 3.2 5.48, d, 3.0 5.48, d, 3.2 5.59, d, 3.2 9″β 2.18, m 2.20, m 2.18, m 2.19, m 2.22 2.61, m 2.63, m 2.35, m
13′β 5.62, d, 3.2 6.10, d, 3.0 6.11, d, 3.2 6.28, d, 3.2 13″α 6.12, d, 3.2 6.23, d, 3.2 6.19, d, 3.2 6.17, d, 3.2 6.28, d, 3.0 6.27, d, 3.0 6.28, d, 3.2 6.16, d, 3.4
14′α 5.22, s 2.10, m 2.09, m 5.13, br s 13″β 5.47, d, 3.2 5.54, d, 3.2 5.50, d, 3.2 5.52, d, 3.2 5.57, d, 3.0 5.59, d, 3.0 5.59, d, 3.2 5.45, d, 3.4
14′β 5.14, s 1.80, m 1.79, m 4.79, br s 14″α 4.99, br s 4.98, br s 4.96, br s 4.94, s 5.02, s 5.09, s 5.10, s 4.93, br s
15′α 2.32 2.17, m 2.17, m 1.90, m 14″β 4.65, br s 4.73, br s 4.63, br s 4.59, s 4.77, s 4.76, s 4.77, s 4.89, br s
15′β 1.67 1.85, m 1.99, m 2.08, m 15″α 2.29, m 2.29, m 1.76, m 1.68, m 2.32 2.30, m 2.30, m 2.18, m
15″β 1.67, ddd, 13.9, 7.5, 5.8 1.96, m 1.59, m 1.48, m 2.03 2.06, m 2.30, m 1.99, m

Table 25.

13C-NMR data of compounds 111127.

NO. 111 [72] 112 [72] 113 [73] 114 [72] 115 [74] 116 [75] 117 [31] 118 [31] 119 [77] 120 [47] 121 [47] 122 [47] 123 [47] 124 [76] 125 [76] 126 [78] 127 [78]
CD3OD CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 DMSO CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3
1 41 38.3 41.8 36.6 80.7 173.6 171.8 172.7 170.6 172 171.6 173.2 173.1 171 169 169.6 174
2 45.3 45.9 38.1 39.8 26 140.7 140.3 140.5 143.2 140.2 140.4 140.6 140.8 142.1 142.7 142.9 140.6
3 221 218.5 90.5 213.9 29.7 207.3 208.5 206.1 194.1 208.5 208.4 206.3 206.5 193.8 193.6 193.8 210
4 51.6 52.1 89.1 90.8 38.2 53.6 46.9 53.6 142 47 47 52 51.8 141.8 141.1 142.1 45
5 49.1 48.8 53.1 49.1 149.5 49 54.9 46.9 47.3 54.8 55.1 48.3 48.5 51 49.7 46.5 52.6
6 90.1 87.9 82.9 81.7 118.1 82.3 82.6 82.2 83.6 82.6 82.6 82.6 82.6 82.7 81.2 84 85
7 45.1 44.4 49 44.4 42.2 51.6 54.7 50.8 43.4 54.9 51.6 51.6 51.7 43.7 52.4 166 43.3
8 32.7 31.7 31.3 31.9 75.3 21 22.5 20.7 35.3 22.5 21 21 21 25.3 20.8 21.7 23
9 39 37.9 37.8 39.2 39.8 36 36.3 36.7 38.4 36.2 36.1 36.2 36.2 27.7 35.9 35.2 35
10 150.9 148.6 147.5 148 38.5 68.3 68.2 67.3 71.1 68.1 68.3 68.4 68.4 33.3 68.2 69.3 71.2
11 141.1 139 139.5 138.4 56.8 139.3 41.9 140 140.3 41.9 139.4 139.5 139.6 139.3 138.8 126 140.6
12 171.9 169.7 170 169.1 178.8 169.7 178.5 169.6 169.9 178.6 170 170.1 170.1 168.4 169.8 172.8 170
13 121.6 121.4 119.7 121.8 36.4 119.3 12.6 118.4 119.6 12.6 119.1 119.1 119.1 120.7 119.2 54.6 119.5
14 113.4 113.8 113.8 114.4 21.6 36.2 36.3 36 28.3 36.3 36.3 36 36 31.2 36.3 37.3 38.6
15 23.6 22.8 33.1 28.6 23 60.6 14.3 57.5 122.5 14.3 14.2 69.2 67.2 120.9 122.4 122.3 16.5
1′ 41.1 39.6 50.1 36.1 62.3 40 40 38.7 39.9 40 40 40 40 40 40.1 39.8 39.7
2′ 36.5 44.4 46.9 34.9 81.9 44.7 44.8 39.3 44.9 44.7 44.7 44.8 44.8 45.1 44.7 44.7 44.7
3′ 175.1 215.3 224.9 172.4 56.2 222 222.1 220.4 219.7 222.3 222.1 222.5 222.4 220.4 222.1 219.4 219.8
4′ 212.5 80.1 62.2 113.2 134.2 51 50.9 50.1 51 50.9 50.9 50.9 50.9 51 51.1 51.1 50.7
5′ 57.4 51.4 38.9 47.3 136.4 49.6 50 50.8 49.1 49.6 49.5 49.6 49.7 49.4 49.6 48.8 49.7
6′ 86 82.2 84 81.6 26 83.8 83.6 83.6 84.4 83.9 83.9 83.9 83.8 84.1 83.9 84.3 84
7′ 44.4 40.1 43.7 45.3 45.3 43.5 47.8 42.5 43.5 43.5 43.5 43.4 43.5 43.5 43.5 43.6 47.8
8′ 31.1 31.5 32.8 31.9 82.5 32 33 31.1 31.9 31.9 31.9 32 32 32 32 31.9 32.9
9′ 37.9 36.5 38.9 40.1 36.1 39.5 39.8 39.2 39.4 39.5 39.5 39.5 39.5 39.5 39.4 39.5 39.8
10′ 148.2 147.2 150 145.8 29.8 150.1 150.6 151.2 150.1 150.1 150.1 150.2 150.2 150.6 150.1 150.1 150.4
11′ 140.8 138.7 138.6 138.8 139.4 138.5 41.8 139.3 138.1 138.5 138.4 138.6 138.5 138.6 138.4 138.1 41.8
12′ 171.3 169.6 169 169.8 170 169.3 177.5 169.2 170.4 169.3 169.3 169.4 169.2 169.8 169.5 170.7 179
13′ 121.4 121.4 122 120.8 119.5 121.7 13.4 120.6 121.8 121.6 121.7 121.5 121.5 121.6 121.8 122.7 13.3
14′ 116 114.3 113.7 116.2 17 114.2 113.6 113.1 114.1 114.1 114.1 114.1 114.1 114 114.2 114.2 113.6
15′ 42.9 31.2 26.3 37.1 14.3 25.8 26 25.7 23 25.8 25.8 25.9 25.9 26.2 25.8 27.6 28.4
1″ 170 59.2 66.8
2″ 21.2 15

Table 26.

13C-NMR data of compounds 128135.

NO. 128 [79] 129 [79] 130 [80] 131 [81] 132 [78] 133 [75] 134 [75] 135 [80] NO. 128 [79] 129 [79] 130 [80] 131 [81] 132 [78] 133 [75] 134 [75] 135 [80]
CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3
1 40.1 170.4 173.4 172.9 170.1 173.8 172.4 149.6 1′ 44.9 46.5 40.2 39.9 46.4 171.9 172.3 40
2 44.4 142.8 141.6 139.4 142.7 138.2 139.1 134.8 2′ 42.7 48.6 44.6 44.6 48.6 140.3 140 44
3 218.7 193.6 207.8 205.2 193.6 193.9 194.2 115.4 3′ 215 218.3 222.2 223 218.2 207.6 207.3 222
4 51.2 142.3 49.2 79 142.1 141.4 141.6 79.4 4′ 80.9 52.8 51.2 51 52.7 52.3 51.9 52.7
5 49.1 47.6 51.2 53.6 47.5 51.2 46.9 56.9 5′ 50.4 45.9 49.5 50.2 45.8 58.1 58.3 48.2
6 88.1 84 82.9 80.3 83.9 83.2 84 80.3 6′ 81.9 83.7 84.2 84.2 83.6 80.7 80.6 83.9
7 44.2 43.7 51.5 51.4 43.6 44 43.5 50.5 7′ 46.7 45.2 43.3 43.4 45 52.2 52.2 44.2
8 31.8 23.1 21 21.9 23 24.9 22.9 21.5 8′ 31.3 32.1 31.9 31.8 32 21.2 21.1 32
9 38.1 35.2 35.8 36.3 35.1 28.9 34.2 36.9 9′ 39.4 39.8 39.6 39.7 39.7 36.6 36.6 39.9
10 148.8 71.2 68.7 68 71.2 34.6 72.6 67.9 10′ 146.2 148.9 150.4 150.1 148.8 68.3 68.3 149.6
11 139.4 140.6 140.1 139.3 140.4 139.3 140.2 139.9 11′ 138.7 138.4 139.1 138.8 138.2 138.8 138.6 138.5
12 169.8 170.1 170.4 170.3 170 169.4 169.8 170.7 12′ 169.8 170.9 169.5 169.6 170.8 169.4 169.3 169.9
13 120.8 119.6 118.7 118.5 119.5 120.5 119.6 118.4 13′ 121.1 122.4 121 121.3 122.3 119.3 119.5 122.1
14 113.6 38.6 36.5 36.7 38.5 27.1 38.2 37.1 14′ 114.8 114.6 114.2 114.5 114.5 36.7 36.6 114.9
15 23.6 121.6 25.2 31.7 121.7 122 123 27.8 15′ 32.2 27 26.2 25.9 26.9 28.6 31.2 26.1
NO. 128 [79] 129 [79] 130 [80] 131 [81] 132 [78] 133 [75] 134 [75] 135 [80]
CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3
1″ 40.0 40.4 39.8 39.6 40.3 39.9 39.9 46.5
2″ 44.1 43.9 44.9 44.9 43.8 44.6 44.5 45.2
3″ 218.4 218.2 218.3 218.5 218.3 218.8 218.8 109.4
4″ 49.3 49.0 51.6 51.1 48.9 50.5 50.5 95.2
5″ 48.6 49.9 46.6 46.2 49.8 50.3 50.4 54.5
6″ 88.2 87.0 89.0 89.0 86.9 84.1 84.0 79.4
7″ 44.0 44.8 44.1 43.9 44.7 43.7 43.7 43.7
8″ 31.4 31.3 31.6 31.1 31.2 31.9 31.9 27.6
9″ 38.1 36.8 38.7 38.8 36.7 39.6 39.6 27.1
10″ 148.7 148.2 148.7 148.8 148.1 150.0 149.9 146.1
11″ 139.3 139.2 139.1 138.7 139.1 138.6 138.5 139.1
12″ 169.8 169.6 169.9 169.8 169.5 169.4 169.4 169.5
13″ 120.6 121.2 120.9 121.1 121.2 121.6 121.7 120.5
14″ 113.6 114.3 113.3 113.1 114.2 114.4 114.5 116.3
15″ 29.6 32.8 22.5 20.9 32.8 25.8 25.8 22.7

5.2. Bioactivity of Polymer Sesquiterpene Lactones

5.2.1. Antitumor and Cytotoxic

Polymer sesquiterpene lactones inhibit the activity of tumor cell lines or cancer cell lines. The dimeric sesquiterpene lactone japonicone A (115) showed significant inhibitory activity against the three tested human tumor cell lines 95D, MDA-MB-231, and HepG2, with IC50 values of 9.10, 3.82, and 1.43 μM, respectively [8]. Ainsliatriolide C (131), ainsliadimer B (116), and ainsliatrimer B (134) were isolated from Ainsliaea yunnanensis and showed very significant selective cytotoxic activities on MDA-MB-468, PANC-1, HEPG2, and A549 cells, and IC50 values from 5.1 μM to 34.4 μM [81]. With DOX (doxorubicin) as the positive control, the antitumor activity of the isolated compounds against A549, LOVO, CEM, and MDA-MB-M-435 (MDA) was detected by an MTT assay. Both Ainsliatrimer A (133) and ainsliatrimer B (134) showed potent cytotoxicites against the LOVO and CEM cell lines [75]. Ainsliatriolide A (130) and ainsliatriolide B (135) exhibited stronger cytotoxicity on A-549, HT-29, BEL-7402, and HL-60 cancer cell lines, especially ainsliatriolide A (130) which displayed potent cytotoxicity with an averaged IC50 value of 1.17 μM against four cancer cell lines [80].

With cisplatin as a positive control, the cytotoxicity of the compounds isolated from Ainsliaea fragrans was tested in the five cancer cell lines of C6 rat glioma cells, Huh1, HCC-LM3 human hepatocellular carcinoma cells, PANC-1 human pancreatic cells, and Hela human cervical cancer cells. The cytotoxicity results showed that ainsfragolide (132) is an unusual guaianolide sesquiterpene trimer, which is generated by a new C2″–C15″ bond and has a significant inhibitory effect on five cancer cells with a half-inhibitory concentration value in the range of 0.4–8.3 μM. Three trimers ainsfragolide (132), ainsliatrimer A (133), and ainsliatrimer B (134) showed more potent cytotoxic effect against the five test cancer cells than the dimers. When compared with ainsliatrimer B (134), the decreased activity of ainsliatrimer A (133) indicated that the introduction of an extra hydroxy group at the C-10 position is important for the resultant cytotoxicity. Similarly, the dimers gochnatiolide A (119) and gochnatiolide B (125) with a C-10 OH group were more cytotoxic than gochnatiolide C (124), respectively. Furthermore, gochnatiolide A (119) with a β-configuration of OH-10 was about 2–10-fold more active than gochnatiolide B (125) with α-OH at C-10. In contrast, ainsliadimer B (116) with 10β–OH and OH-15 groups showed reduced activity [78]. Therefore, we can try to obtain a trimer with a β-configuration hydroxyl at the C-10 position and no hydroxyl at the C-15 position by synthesis or structural modification, so as to improve the cytotoxic activity of polymer sesquiterpene lactones against cancer cells.

5.2.2. Anti-Inflammatory

Macrocephadiolide A (114) and macrocephadiolide B (111) showed a potent inhibitory effect on nitric oxide (NO) production, with IC50 values of 0.99 and 6.13 µM, respectively, on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Macrocephadiolide A (114) dose-dependently suppressed the expression of inducible NO oxidase (iNOS) through inhibiting nuclear factor kappa B (NF-κB) activation [72]. Ainsliadimer A (113) represents an unusual carbon skeleton with a cyclopentane system connecting the two monomeric sesquiterpene lactone units. This unique molecule exerted potent inhibitory activity against the production of nitric oxide in RAW264.7 cells stimulated by LPS, with an IC50 value of 2.41 µg/mL [73]. Gochnatiolide A (119) showed significant anti-inflammatory activity by inhibiting the expression of nuclear factor kappa B (NF-κB) in the 293-NF-κB-luciferase reporter cell line and the production of TNF-α, IL-1β, IL-6, and IL-10 in RAW264.7 macrophages induced by lipopolysaccharide (LPS) [47]. The anti-inflammatory effects of polymer sesquiterpene lactones in Ainsliaea are achieved by inhibiting the production of nitric oxide (NO) in RAW264.7 macrophages, inhibiting the activity of nuclear factor kappa B (NF-κB) in the luciferase 293-NF-κB-luciferase reporter cell line, and inhibiting the expression of TNF-α, IL-1β, IL-6, and IL-10 in RAW264.7 macrophages.

5.2.3. Other Biological Activities

The polymer sesquiterpene lactones also have antibacterial and blood-sugar regulation effects. Ainsliatrimer B (134) also showed a medium inhibiting effect on Bacillus subtilis with a MIC value of 32 μg/mL [81]. Macrocephatriolide B (128) showed potent inhibition against protein tyrosine phosphatase 1B (PTP1B) with an IC50 value of 26.26 ± 0.88 μM. In insulin-stimulated C2C12 myotubes, macrocephatriolide B (128) dose-dependently enhanced glucose uptake by activating the insulin signaling pathway and might represent a new scaffold of insulin sensitizers [79].

6. Other Sesquiterpenoids

Beyond those mentioned above, there exist other categories of sesquiterpenoids and their derivatives, such as myrrhanes, lananes, and carabanes. And further details can be referenced in Figure 5 and Table 27.

Figure 5.

Figure 5

Chemical structures for compounds 136145.

Table 27.

The compound name, molecular formula, and test reagent of other sesquiterpenoids.

No. Compound Name Molecular Formula Solvent Ref.
136 1-Oxo-bisabola-2-ene-12-ol C15H26O2 CDCl3 [82]
137 Pubescone C14H22O2 CDCl3 [83]
138 Ainsliaea acid A C16H22O3 CD3OD [67]
139 Curzerenone C15H18O2 CDCl3 [84]
140 1-O-Acetyl-6-O-isobutyrylbritannilactone C20H30O6 CDCl3 [85]
141 6α-(3-Methylvaleryloxy)-1-hydroxy-4αH-1,10-secoeudesma-5(10),11(13)-dien-12,8β-olide C21H32O5 CDCl3 [86]
142 Kobusone C14H21O2 CDCl3 [87]
143 10-Hydroxy-6,10-epoxy-7(14)-isodaucane C15H24O2 CDCl3 [88]
144 Clovane-2β,9α-diol C15H26O2 CDCl3 [89]
145 Caryolane-1,9β-diol C15H26O2 CDCl3 [89]

6.1. NMR Data of Other Sesquiterpenoids 136145

The NMR spectra of 1H and 13C are summarized in Table 28 and Table 29. This paper also compiles data regarding the nuclear magnetic resonance testing instruments used for the compounds numbered from 136 to 145. The 1H and 13C data of compound 136 were recorded using a Bruker instrument operating at 300 MHz. For compound 137, NMR data collection was performed with the Bruker-Avance-III-400 instrument (Bruker, Switzerland). For compound 140, the NMR data were conducted on a Bruker AMX 400 instrument (Bruker, Zurich, Switzerland). The NMR data for compound 141 were taken with a Bruker Avance-500 instrument (Bruker, Switzerland). Both the 1H and 13C data of compound 143 were measured using JEOL Lamda 400 (JEOL, Japan) and Lamda 600 instruments (JEOL, Japan). Finally, compounds 144 and 145 had their respective 1H and 13C data collected via the JEOL JNM-GX400 instrument (JEOL, Japan). The 1H data for compounds 138, 139, and 142 were measured at frequencies of 600 MHz, 300 MHz, and 400 MHz, respectively. The 13C NMR of compounds 138, 139, and 142 were tested under 150 MHZ, 75 MHZ, and 100 MHZ, respectively.

Table 28.

1H-NMR data of compounds 136145.

NO. 136 [82] 137 [83] 138 [67] 139 [84] 140 [85] 141 [86] 142 [87] 143 [88] 144 [89] 145 [89]
CDCl3 CDCl3 CD3OD CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3
1α 5.90, dd, 17.8, 11.2 5.78, dd, 17.6, 10.6 3.85–4.00, m 3.52, m
1β 1.66–1.63, m 3.44, m 1.93, ddd, 10.4, 8.8, 1.2
2α 5.86, m 1.76–1.63, m 5.34, dd, 17.8, 1.1 4.74–4.99, m 1.34–1.45, m 1.32, m 1.67, m 1.82 3.79, dd, 10.5, 5.5 2.22, ddd, 12, 10, 8.5
2β 5.25, dd, 18.0, 1.2 1.21–1.31, m 1.13, m 1.54, m 1.37
3α 2.53–2.48, m 4.90, m 4.74–4.99, m 1.21–1.31, m 1.32, m 2.15, dt, 13.2, 3.6 1.87 1.51, dd, 11.5, 10 1.49, dd, 10, 9
3β 0.97–1.08, m 1.00, m 0.94, td, 13.2, 4.4 1.27 1.71, dd, 11.5, 5.5 1.54, t, 10
4 2.32, m 2.60–2.76, m 2.70, m 1.58
5α 1.92, m 1.05–1.03, m 2.79, br s 3.00, s 1.56 1.89, ddd, 12, 9, 6
5β 1.78, m 2.69, dd, 10.0, 5.2 1.42, m
6α 2.15, m 0.72–0.67, m 5.19, d, 1.7 5.23, d, 1.7 2.40, m 3.98 1.32, m 1.39, m
6β 4.64, br s 1.44, m 1.35, m 1.53, m
7α 2.33, m 2.02, m 3.41–3.49, m 3.50, m 2.55, dd, 6.4, 2.0 1.11, m 1.15, m
7β 2.53, d, 6.4 1.50, m 1.42, m
8α 1.26, m 2.05, dd, 8.8, 3.2 1.96, m 4.90–4.98, m 5.01, m 2.49
8β 1.43, m 2.35
9α 1.34, m 2.14–2.11, m 1.86, m 2.83, AB system, 17.6 2.60–2.76, m 2.75, dd, 16.2, 2.1 3.05, td, 8.8, 8.8 2.02 3.44, t, 3
9β 2.02–1.99, m 2.45–2.56, m 2.51, dd, 16.2, 2.3 1.76 3.32, br s
10α 1.39, m 1.88–1.84, m 2.06, dd, 10.4, 8.8 1.64, m 1.77, ddt, 15, 5, 3
10β 1.12, m 1.66, d, 10.4 1.99, m 2.04, dddd, 15, 12.5, 5.5, 3
11α 1.62, m 1.80–1.77, m 1.51 1.07, m 1.51, m
11β 2.36, m 1.66, m 1.64, td, 12.5, 5
12α 3.50, dd, 10.6, 5.8 0.92, d, 6.8 7.08, br s 1.30, s 0.89, d, 6.6 0.91, br d, 12.5 1.42, d
12β 3.42, dd, 10.6, 5.8 1.56, d, 12.5 1.47, d
13α 0.91, d, 6.7 0.92, d, 6.8 1.24, d, 7.0 2.16, br s 6.37, d, 2.9 6.36, d, 2.6 1.02, s 0.92, d, 6.6 0.86, s 1.00, s
13β 5.94, d, 2.3 6.02, d, 2.3
14 0.79, d, 6.8 2.18, s 1.17, s 1.80, s 1.82, s 1.02, s 1.15, s 1.04, s 1.02, s
15α 1.93, br s 1.67, s 1.83, br s 0.86, d, 6.9 0.90, d, 7.0 4.76, br s 0.96, s 0.93, s
15β 4.70, br s
2′α 2.45–2.56, m 2.32, m
2′β 2.11, m
3′ 1.15, d, 6.9 1.87, m
4′α 1.15, d, 6.9 1.37, m
4′β 1.26, m
5′ 0.92, t, 7.5
6′ 0.94, d, 7.0

Note: The 1H-NMR data of 2″ of compound 140 were 2.04, s.

Table 29.

13C-NMR data of compounds 136145.

NO. 136 [82] 137 [83] 138 [67] 139 [84] 140 [85] 141 [86] 142 [87] 143 [88] 144 [89] 145 [89] NO. 140 [85]
CDCl3 CDCl3 CD3OD CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3
1 201.4 34.4 135.8 145.5 64.2 61.7 51.1 54.5 44.6 70.7 1′ 176.9
2 127.2 24.8 117.9 115.7 26.5 30.7 26.2 26.4 80.8 38 2′ 34.6
3 161.4 41.7 115.5 113 31 30.3 38.8 30.6 47.5 34 3′ 18.7
4 30.6 208.7 144.4 141.1 33 32.9 58.6 57.6 37.1 35 4′ 18.8
5 22.6 29.9 61.5 64.1 132.1 131.9 61.3 58.9 50.6 43.8 1″ 171.2
6 50.1 46.4 82.2 194 69 68.8 24.5 86 20.7 20.3 2″ 21
7 30.9 214.2 43.3 120.2 42.9 42.7 37.4 144.8 33.2 35.3
8 34.9 32.8 25 165.6 74.9 75.6 213.8 33.2 34.7 39.3 NO. 141 [86]
9 24.9 22.9 34.7 33.6 34.1 34.1 52.3 35.9 75.1 72.1 CDCl3
10 33.3 27.9 52.3 42.9 133.6 133.3 35 105.1 26 28.1 1′ 173.4
11 35.8 30.9 43.8 119.3 136.3 136 34.2 34.1 26.4 33.3 2′ 41.3
12 68.4 19.5 179.2 139.6 169.5 170.5 16 21.5 35.6 42.4 3′ 31.6
13 16.7 19.2 15.4 9.1 124.9 125.1 29.1 20.4 25.4 20.8 4′ 28.8
14 15.8 29.9 180 24.9 20.5 19.9 22 21.6 31.4 30.5 5′ 10.6
15 24.2 21.9 25 18.6 18.1 108.4 28.4 26.7 6′ 18.7

6.2. Bioactivity of Other Sesquiterpenoids

At the concentration of 10 μMol/L, ainsliaea acid A (138) significantly inhibited nuclear factor kappa B (NF-κB) in lipopolysaccharides-induced 293-NF-κB-luciflucidase reporter cell lines with a inhibitory rate of 17.5%. Further experiments showed that ainsliaea acid A (138) exerted anti-inflammatory effects by inhibiting the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-10 in RAW264.7 macrophages induced by LPS [67].

7. Conclusions

Sesquiterpenoids derived from plants of the genus Ainsliaea exhibit a wealth of pharmacological activities, demonstrating significant antitumor, anti-inflammatory, antibacterial, and antiobesity effects. Currently, the existing literature primarily focuses on the chemical composition and pharmacological effects of these plants; however, comprehensive NMR data summarizing the related components remain scarce. This paper consolidates the 1H- and/or 13C-NMR data for sesquiterpenes extracted from Ainsliaea species, and the pharmacological activities of sesquiterpenes are summarized, thereby providing a valuable reference for discovering novel sesquiterpenes and differentiating between various types. It also offers essential data support for structural analysis and compound identification. Additionally, exploring new sesquiterpene constituents is crucial for investigating their pharmacodynamic material basis, as well as their structure–activity relationships and mechanisms of action, and enriching the diversity of natural products.

The sesquiterpenoids found in the plants of Ainsliaea are mostly guaiane and eudesmane, and the active ingredients found are mostly guaiane and polymer sesquiterpene lactones. Guaiacanolactone containing a α-methylene-γ-lactone moiety and guaiac lactones containing hydroxyl groups with three outer-ring double bonds have a significant inhibitory effect on NO production. Trimeric sesquiterpene lactones with a β-configuration hydroxyl at the C-10 position and without a hydroxyl group at C-15 have high cytotoxic activity. Therefore, it is of great significance to find compounds containing these components in natural products or to obtain these compounds through synthesis and structural modification to improve the anti-inflammatory activity of guaiane sesquiterpenes and the cytotoxic activity of polymer sesquiterpene lactones. The limited amount of germacrane and other sesquiterpenes reported within this genus renders the data support for structural analysis and identification of these compounds insufficiently convincing. It is essential to conduct further investigations into their chemical constituents, identify additional sesquiterpenes, and enhance the diversity of sesquiterpene types within the genus. Moreover, a comprehensive summary of the NMR spectral data pertaining to triterpenoids, steroids and their derivatives, phenolic acids, flavonoids, anthraquinones, coumarins, lignans, and other components remains lacking and needs to be further summarized.

Author Contributions

Writing—original draft, H.Z. and R.-R.S.; Investigation, Y.-F.L. and X.G.; Methodology, C.-L.L.; Writing—review and editing, Z.-D.N. and Z.-B.J.; Project administration, Z.-D.N. and Z.-B.J. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

All authors have no conflicts of interest to declare.

Funding Statement

This research was funded by the National Natural Science Foundation of China (No. 82160672), the General Project of Ningxia Natural Science Foundation (No. 2024AAC03172), and the Scientific Research Start-up project for Recruitment Talents of North Minzu University in 2021 (No. 2021KYQD35).

Footnotes

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

References

  • 1.Editorial Committee of Chinese Botany, Chinese Academy of Sciences . Chinese Flora. Volume 79. Science Press; Beijing, China: 1996. pp. 68–69. [Google Scholar]
  • 2.Hisanori J. Studies on the constituents of Ainsliaea acerifolia SCH.-BIP. Var. Subapoda NAKAI. Yakugaku Zasshi. 1982;102:911–922. doi: 10.1248/yakushi1947.102.10_911. [DOI] [Google Scholar]
  • 3.Bohlmann F., Chen Z.L. Guaianolides from Ainsliaea fragrans. Phytochemistry. 1982;21:2120–2122. doi: 10.1016/0031-9422(82)83061-6. [DOI] [Google Scholar]
  • 4.Gao Y., Lu Y.H., Xu X., Xin J., Yang M., Lin T., Chen J., Qi X., Feng Y., Zu X. A Review of Chemical Constituents in Ainsliaea Plants and Their Pharmacological Activities. Chin. Arch. Tradit. Chin. Med. 2024;42:142–163. doi: 10.13193/j.issn.1673-7717.2024.02.030. [DOI] [Google Scholar]
  • 5.Guo J., Wang J.-P., Peng B., Liu X.-Q., Yang C.-X., Yan L.-H., Wang Z.-M. Research progress on natural guaiane-type sesquiterpenoids and their biological activities. China J. Chin. Mater. Medica. 2023;48:5727–5749. doi: 10.19540/j.cnki.cjcmm.20230731.301. [DOI] [PubMed] [Google Scholar]
  • 6.Xu Y., Zhang H., Wan X., Zou Z. Complete assignments of 1H and 13C NMR data for two new sesquiterpenes from Cyperus rotundus L. Magn. Reson. Chem. 2009;47:527–531. doi: 10.1002/mrc.2416. [DOI] [PubMed] [Google Scholar]
  • 7.Zhang J., Xu Y., Li R., Zhang Y., Yue C., Bi D., Cheng B., Wu X., Zhang R., Zhang X., et al. Ainslides A-F, six sesquiterpe-noids isolated from ainsliaea pertyoides and their NLRP3-inflammasome inhibitory activity. Chem. Biodivers. 2022;19:e202200135. doi: 10.1002/cbdv.202200135. [DOI] [PubMed] [Google Scholar]
  • 8.Shi Z.-R., Zhang X.-Y., Zeng R.-T., Zhuo Z.-G., Feng F., Shen Y.-H., Zhang W.-D. Sesquiterpenoids from Ainsliaea spicata and their cytotoxic and NO production inhibitory Activities. Phytochem. Lett. 2016;18:87–94. doi: 10.1016/j.phytol.2016.09.005. [DOI] [Google Scholar]
  • 9.Feng F., Chen M.-H., Xing C.-X., Liu W.-Y., Xie N. Two novel sesquiterpenoids from Ainsliaea fragrans Champ. J. Asian Nat. Prod. Res. 2009;11:856–860. doi: 10.1080/10286020903014944. [DOI] [PubMed] [Google Scholar]
  • 10.Nishizawa M., Inoue A., Hayashi Y., Sastrapradja S., Kosela S., Iwashita T. Structure of aphanamols I and II. J. Org. Chem. 1984;49:3660–3662. doi: 10.1021/jo00193a046. [DOI] [Google Scholar]
  • 11.Fang X., Zeng R.-T., Zhuo Z.-G., Shen Y.-H., Zhang W.-D. Sesquiterpenoids from Ainsliaea yunnanensis and their cytotoxic activities. Phytochem. Lett. 2018;26:25–29. doi: 10.1016/j.phytol.2018.05.013. [DOI] [Google Scholar]
  • 12.Choi S.-Z., Yang M.-C., Choi S.-U., Lee K.-R. Cytotoxic terpenes and lignans from the roots of Ainsliaea acerifolia. Arch. Pharmacal Res. 2006;29:203–208. doi: 10.1007/BF02969394. [DOI] [PubMed] [Google Scholar]
  • 13.Tsichritzis F., Jakupovic J., Bohlmann F. Sesquiterpene lactones and farnesol derivatives from Arctotis and Arctotheca species. Phytochemistry. 1990;29:195–203. doi: 10.1016/0031-9422(90)89036-9. [DOI] [Google Scholar]
  • 14.Adegawa S., Miyase T., Ueno A. Sesquiterpene lactones from Diaspananthus uniflorus (SCH. BIP.) KITAM. Chem. Pharm. Bull. 1987;35:1479–1485. doi: 10.1248/cpb.35.1479. [DOI] [Google Scholar]
  • 15.Kumari G., Masilamani S., Ganesh M., Aravind S. Microbial transformation of zaluzanin D. Phytochemistry. 2003;62:1101–1104. doi: 10.1016/S0031-9422(02)00667-2. [DOI] [PubMed] [Google Scholar]
  • 16.Boglarka C.L., Istvan Z., Judit M., Peter F., Judit H. Bioactivity-guided isolation of antiproliferative compounds from the roots of Onopordum acanthium. Nat. Prod. Commun. 2014;9:337–340. doi: 10.1177/1934578X1400900313. [DOI] [PubMed] [Google Scholar]
  • 17.Lee J.Y., Cha M.-R., Kim M.R., Lee K., Choi S.-U., Ryu S.Y. Two Novel Guaiane Sesquiterpenes from the Whole Plant of Youngia. Planta Medica Lett. 2015;2:e31–e34. doi: 10.1055/s-0035-1557794. [DOI] [Google Scholar]
  • 18.Bruno M., Bancheva S., Rosselli S., Maggio A. Sesquiterpenoids in subtribe centaureinae (Cass.) dumort (tribe cardueae asteraceae): Distribution, 13C NMR spectral data and biological properties. Phytochemistry. 2013;95:19–93. doi: 10.1016/j.phytochem.2013.07.002. [DOI] [PubMed] [Google Scholar]
  • 19.Hou P.Y., Huang J., Sun B.-H., Wu L.-J., Gao H.-Y. Isolation and identification of chemical constituents from whole plant of Saussurea involucrata Kar. et kir. J. Shenyang Pharm. Univ. 2011;2:120–123. doi: 10.14066/j.cnki.cn21-1349/r.2011.02.002. [DOI] [Google Scholar]
  • 20.Shen T., Weng C.W., Xie W.D., Row K.H. A new guaiane sesquiterpene from Paraixeris pinnatipartite. J. Chem. Res. 2009;10:623–624. doi: 10.3184/030823409X12526892025865. [DOI] [Google Scholar]
  • 21.Kisiel W., Michalska K. Sesquiterpenoids and phenolics from Crepis conyzifolia. Z. Für Naturforschung C. 2001;56:961–964. doi: 10.1515/znc-2001-11-1208. [DOI] [PubMed] [Google Scholar]
  • 22.Li X., Liu J., Cai J., Cai P. Complete 1H and 13C data assignments of two new guaianolides isolated from Ainsliaea fragrans. Magn. Reson. Chem. 2008;46:1070–1073. doi: 10.1002/mrc.2294. [DOI] [PubMed] [Google Scholar]
  • 23.Singhal A.K., Chowdhury P.K., Sharma R.P., Baruah J.N., Herz W. Guaianolides from Tricholepis glaberrima. Phytochemistry. 1982;21:462–463. doi: 10.1016/S0031-9422(00)95292-0. [DOI] [Google Scholar]
  • 24.Kisiel W. Guaianolides from Picris altissima. Phytochemistry. 1992;31:328–329. doi: 10.1016/0031-9422(91)83066-T. [DOI] [Google Scholar]
  • 25.Liu B., Xie Y.-Z., Li X.-X., Sun Y.-Y., Xu F., Ji T.-F. Chemical constituents of Myripnois dioica. Chin. J. Tradit. Chin. Med. 2016;41:3260–3264. doi: 10.4268/cjcmm20161723. [DOI] [PubMed] [Google Scholar]
  • 26.Zong Y., Yu M., Huang L., Chang Y., Wang Y., Che C.-T. Studies of Tibetan medicinal plants, I.I. Antitumour activity of Saussurea eopygmaea. Int. J. Pharmacogn. 1994;32:284–293. doi: 10.3109/13880209409083006. [DOI] [Google Scholar]
  • 27.Seto M., Miyase T., Fukushima S. Sesquiterpene Lactones from Ixeris dentata NAKAI. Chem. Pharm. Bull. 1986;34:4170–4176. doi: 10.1248/cpb.34.4170. [DOI] [Google Scholar]
  • 28.Das S., Baruah R.N., Sharma R.P., Baruah J.N., Kulanthaivel P., Herz W. Guaianolides from Saussurea affinis. Phytochemistry. 1983;22:1989–1991. doi: 10.1016/0031-9422(83)80030-2. [DOI] [Google Scholar]
  • 29.Cho J.-Y., Jeong S.-J., La Lee H., Park K.-H., Hwang D.Y., Park S.-Y., Lee Y.G., Moon J.-H., Ham K.-S. Sesquiterpene lactones and scopoletins from Artemisia scoparia Waldst. & Kit. and their angiotensin I-Converting Enzyme Inhibitory Activities. Food Sci. Biotechnol. 2016;25:1701–1708. doi: 10.1007/s10068-016-0261-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Kisiel W., Zielińska K., Joshi S.P. Sesquiterpenoids and phenolics from Crepis mollis. Phytochemistry. 2000;54:763–766. doi: 10.1016/S0031-9422(00)00167-9. [DOI] [PubMed] [Google Scholar]
  • 31.Wu Z.-J., Xu X.-K., Zeng H.-W., Shen Y.-H., Tian J.-M., Su J., Li H.-L., Shan L., Liu R.-H., Zhang W.-D. New sesquiterpenoids from Ainsliaea macrocephala and their nitric oxide inhibitory activity. Planta Medica. 2011;77:1545–1550. doi: 10.1055/s-0030-1270930. [DOI] [PubMed] [Google Scholar]
  • 32.Fournet A., Muñoz V., Roblot F., Hocquemiller R., Cavé A., Gantier J. Antiprotozoal activity of dehydrozaluzanin C, a sesquiterpene lactone isolated from Munnozia maronii (asteraceae) Phytother. Res. 1993;7:111–115. doi: 10.1002/ptr.2650070203. [DOI] [Google Scholar]
  • 33.Dong X.Y., Wen B., Shen Y.H. Chemical constituents of Ainsliaea latifolia. Chin. Tradit. Herbal Drugs. 2014;45:2148–2152. doi: 10.7501/j.issn.0253-2670.2014.15.006. [DOI] [Google Scholar]
  • 34.Zeng R., Dong X., Fang X., Yang N., Shi Z., Zhuo Z., Shen Y., Zhang W. Cytotoxic and anti-inflammatory sesquiterpenes from Ainsliaea henryi. Chem. Biodivers. 2017;14:e1600210. doi: 10.1002/cbdv.201600210. [DOI] [PubMed] [Google Scholar]
  • 35.Pu J.-X., Zhao J.-F., Yang X.-D., Mei S.-X., Zhang H.-B., Li L. A New Sesquiterpene lactone from Ainsliaea bonatii. Chin. Chem. Lett. 2004;15:1454–1456. [Google Scholar]
  • 36.Li X., Wang W., Jaeger F., Kreyenschmidt J. Ainsliaolide D: A new sesquiterpene lactone from Ainsliaea pertyoides. Nat. Prod. Res. 2014;28:115–118. doi: 10.1080/14786419.2013.850688. [DOI] [PubMed] [Google Scholar]
  • 37.Fang X., Xu X.-K., Wang G.-W., Zeng R.-T., Tian X.-H., Shi Z.-R., Zhuo Z.-G., Shen Y.-H., Zhang W.-D. Guaianolide sesquiterpenoids from Ainsliaea yunnanensis. Phytochemistry. 2017;139:47–55. doi: 10.1016/j.phytochem.2017.04.001. [DOI] [PubMed] [Google Scholar]
  • 38.Zdero C., Bohlmann F., King R., Robinson H. Sesquiterpene lactones and other constituents from Australian helipterum species. Phytochemistry. 1989;28:517–526. doi: 10.1016/0031-9422(89)80045-7. [DOI] [Google Scholar]
  • 39.Shi Z.-R., Shen Y.-H., Zhang X.-Y., Fang X., Zeng R.-T., Liu Q.-X., Zhuo Z.-G., Feng F., Zhang W.-D. Structurally novel C17-sesquiterpene lactones from Ainsliaea pertyoides. RSC Adv. 2015;5:91640–91644. doi: 10.1039/C5RA16551B. [DOI] [Google Scholar]
  • 40.Zhang C., Zhou W., Lei X., Zhao S. Nitric oxide inhibitory terpenes and its glycosides from Ainsliaea bonatii. Fitoterapia. 2022;156:105028. doi: 10.1016/j.fitote.2021.105028. [DOI] [PubMed] [Google Scholar]
  • 41.Miyasw T., Yamada M., Fukushima S. Studies on sesquiterpene glycosides from Prenanthes acerifolia BENTH. Chem. Pharm. Bull. 1987;35:1969–1974. doi: 10.1248/cpb.35.1969. [DOI] [Google Scholar]
  • 42.Li J., Li X., Wang X., Zhong X., Ji L., Guo Z., Liu Y., Shang X. Sesquiterpenoids and their antiinflammatory activity: Evaluation of Ainsliaea yunnanensis. Molecules. 2019;24:1701. doi: 10.3390/molecules24091701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Kim T., Jo C., Kim H.-S., Park Y.-M., Wu Y.-X., Cho J.-H., Kim T.H. Chemical constituents from Ainsliaea acerifolia as potential anti-obesity agents. Phytochem. Lett. 2016;16:146–151. doi: 10.1016/j.phytol.2016.04.005. [DOI] [Google Scholar]
  • 44.Miyase T., Fukushima S. Sesquiterpene Lactones from Ainsliaea acerifolia SCH: BIP. A. Dissecta FRANCH. Et SAV. Chem. Pharm. Bull. 1984;32:3043–3046. doi: 10.1248/cpb.32.3043. [DOI] [PubMed] [Google Scholar]
  • 45.Wang H., Wu T., Yan M., Liu G., Li P., Zhang X.-Q., Ye W.-C., Zhang L.-Y. Sesquiterpenes from Ainsliae fragrans and their inhibitory activities against cyclooxygenases-1 and 2. Chem. Pharm. Bull. 2009;57:597–599. doi: 10.1248/cpb.57.597. [DOI] [PubMed] [Google Scholar]
  • 46.Ding N., Li S.-Y., Li C.-H., Chen L.-H., Zhu Y.-J., Wang J.-Y., Yang Y.-S., Hu L.-H., Wang X.-C. A new guaiane sesquiterpene glycoside from Ainsliaea fragrans. Chin. Tradit. Herb. Drugs. 2020;51:5669–5674. doi: 10.7501/j.issn.0253-2670.2020.22.001. [DOI] [Google Scholar]
  • 47.Wu X.-L., Xiong X.-J., Lu W.-Q., Huang H., Shen Y.-H., Wu Z.-J., Chen W.-S. New sesquiterpenenoids from Ainsliaea yunnanensis. Molecules. 2016;21:1031. doi: 10.3390/molecules21081031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Robinson A., Kumar T.V., Sreedhar E., Naidu V., Krishna S.R., Babu K.S., Srinivas P., Rao J.M. A new sesquiterpene lactone from the roots of Saussurea lappa: Structure-anticancer activity study. Bioorg. Med. Chem. Lett. 2008;18:4015–4017. doi: 10.1016/j.bmcl.2008.06.008. [DOI] [PubMed] [Google Scholar]
  • 49.Chen Y.-P., Wang S.-L., Shen Y.-H., Wu Z.-J. Chemical constituents from Ainsliaea glabra. Guihaia. 2014;34:402–407. doi: 10.3969/j.issn.1000G3142.2014.03.022. [DOI] [Google Scholar]
  • 50.Dong X.Y. Ph.D. Thesis. Fujian University of Traditional Chinese Medicine; Fuzhou, China: 2015. Studies on Chemical Constituents and Bioactivities of the Ainsliaea latifolia (D. Don) Sch. Bip. [Google Scholar]
  • 51.Hänsel R., Kartarahardja M., Huang J.-T., Bohlmann F. Sesquiterpenlacton-β-D-glucopyranoside sowie ein neues eudesmanolid aus Taraxacum officinale. Phytochemistry. 1980;19:857–861. doi: 10.1016/0031-9422(80)85126-0. [DOI] [Google Scholar]
  • 52.Dong X.-Y., Wang G.-W., Zhuo Z.-G., Lv C., Fang X., Shi Z.-R., Zeng R.-T., Shen Y.-H., Zhang W.-D. Terpenoids from Ainsliaea latifolia their cytotoxic activities. J. Asian Nat. Prod. Res. 2016;18:232–238. doi: 10.1080/10286020.2015.1082550. [DOI] [PubMed] [Google Scholar]
  • 53.Wu G.-X., Zhao H.-Y., Peng C., Liu F., Xiong L. Eudesmane-type sesquiterpenoids: Structural diversity and biological activity. Heliyon. 2024;10:e35270. doi: 10.1016/j.heliyon.2024.e35270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Chanotiya C., Sammal S., Mathela C. Composition of a new chemotype of Tanacetum nubigenum. Indian J. Chem. 2005;44:1922–1926. doi: 10.1002/chin.200603194. [DOI] [Google Scholar]
  • 55.González A.G., Barrera J.B., Méndez J.T., Sánchez M.L., Martínez J.L.E. Sesquiterpene alcohols from Gonospermum fructicosum. Phytochemistry. 1992;31:1816–1817. doi: 10.1016/0031-9422(92)83155-R. [DOI] [Google Scholar]
  • 56.Xu F., Morikawa T., Matsuda H., Ninomiya K., Yoshikawa M. Structures of new sesquiterpenes hepatoprotective constituents from the egyptian herbal medicine Cyperus longus. J. Nat. Prod. 2004;67:569–576. doi: 10.1021/np030368k. [DOI] [PubMed] [Google Scholar]
  • 57.Li X., Yang M., Han Y.F., Gao K. New sesquiterpenes from Erigeron annus. Planta Medica. 2005;71:268–272. doi: 10.1055/s-2005-837827. [DOI] [PubMed] [Google Scholar]
  • 58.Taber D.F., Bhamidipati R.S., Yet L. Phenyldimethylsilyl as an alcohol surrogate in intramolecular Diels-Alder cycloaddition: Synthesis of a-dictyopterol. J. Org. Chem. 1995;60:5537–5539. doi: 10.1021/jo00122a038. [DOI] [Google Scholar]
  • 59.Brown G.D., Liang G.Y., Sy L.K. Terpenoids from the seeds of Artemisia annua. Phytochemistry. 2003;64:303–323. doi: 10.1016/S0031-9422(03)00294-2. [DOI] [PubMed] [Google Scholar]
  • 60.Gao X., Deng X. A new eudesmane sesquiterpene from Senecio cannabifolius. J. Chem. Res. 2009;2009:457–458. doi: 10.3184/030823409X465303. [DOI] [Google Scholar]
  • 61.Sanz J.F., Marco J.A. Sesquiterpene lactones from Artemisia caerulescens Subsp. Gargantae. Phytochemistry. 1990;29:2913–2917. doi: 10.1016/0031-9422(90)87104-3. [DOI] [Google Scholar]
  • 62.Bottini A.T., Garfagnoli D.J., Delgado L.S., Dev V., Duong S.T., Kelley C.G., Keyer R., Raffel R., Joshi P., Mathela C.S. Sesquiterpene Alcohols from Hedychium spicatum var. Acuminatum. J. Nat. Prod. 1987;50:732–734. doi: 10.1021/np50052a027. [DOI] [PubMed] [Google Scholar]
  • 63.Borg-Karlson A.-K., Norin T., Talvitie A. Configurations and conformations of torreyol (δ-cadinol), α-cadinol, T-muurolol and T-cadinol. Tetrahedron. 1981;37:425–430. doi: 10.1016/S0040-4020(01)92031-9. [DOI] [Google Scholar]
  • 64.Appendino G., Jakupovic J., Jakupovic S. Sesquiterpenoids from Pallenis spinosa. Phytochemistry. 1997;46:1039–1043. doi: 10.1016/S0031-9422(97)00386-5. [DOI] [Google Scholar]
  • 65.Zhang H.-J., Tan G.T., Santarsiero B.D., Mesecar A.D., Van Hung N., Cuong N.M., Soejarto D.D., Pezzuto J.M., Fong H.H.S. New sesquiterpenes from Litsea verticillate. J. Nat. Prod. 2003;66:609–615. doi: 10.1021/np020508a. [DOI] [PubMed] [Google Scholar]
  • 66.Xu J.J., Tan N.H. Sesquiterpenes and cyclopeptides from the aerial parts of Jatropha curcas Linn. Chin. J. New Drugs. 2013;22:713–718. [Google Scholar]
  • 67.Chen Y.-P., Tong C., Lu W.-Q., Shen Y.-H., Wu Z.-J., Chen W.-S. Three new sesquiterpenes from Ainsliaea glabra. Nat. Prod. Res. 2019;33:274–279. doi: 10.1080/14786419.2018.1446134. [DOI] [PubMed] [Google Scholar]
  • 68.Guerreiro E., Kavka J., Giordano O.S. Sesquiterpenoids and Flavonoids from Flourensia oolepis. Phytochemistry. 1979;18:1235–1237. doi: 10.1016/0031-9422(79)80148-X. [DOI] [Google Scholar]
  • 69.Miyase T., Ozaki H., Ueno A. Sesquiterpene glycosides from Ainsliaea cordifolia Franch. et Sav. Chem. Pharm. Bull. 1991;39:937–938. doi: 10.1248/cpb.39.937. [DOI] [Google Scholar]
  • 70.Yan H., Haiming S., Cheng G., Xiaobo L. Chemical constituents of the roots of Inula helenium. Chem. Nat. Compd. 2012;48:522–524. doi: 10.1007/s10600-012-0298-x. [DOI] [Google Scholar]
  • 71.Wang Y., Xu M.L., Jin H.Z., Fu J.J., Hu X.J., Qin J.J., Yan S.K., Shen Y.H., Zhang W.D. A new nor-sesquiterpene lactone from Ainsliaea fulvioides. Chin. Chem. Lett. 2009;20:586–588. doi: 10.1016/j.cclet.2009.01.016. [DOI] [Google Scholar]
  • 72.Ren Y.-M., Zhou S.-Z., Zhang T., Qian M., Zhang R., Yao S., Zhu H., Tang C., Lin L., Ye Y. Targeted isolation of two disesquiterpenoid macrocephadiolides A and B from Ainsliaea macrocephala using a molecular networking-based dereplication strategy. Org. Chem. Front. 2020;7:1481–1489. doi: 10.1039/D0QO00030B. [DOI] [Google Scholar]
  • 73.Wu Z.-J., Xu X.-K., Shen Y.-H., Su J., Tian J.-M., Liang S., Li H.-L., Liu R.-H., Zhang W.-D. Ainsliadimer A, a new sesquiterpene lactone dimer with an unusual carbon skeleton from Ainsliaea macrocephala. Org. Lett. 2008;10:2397–2400. doi: 10.1021/ol800656q. [DOI] [PubMed] [Google Scholar]
  • 74.Qin J.J., Jin H.Z., Fu J.J., Hu X.J., Wang Y., Yan S.K., Zhang W.D. Japonicones A-D, bioactive dimeric sesquiterpenes from Inula japonica Thunb. Bioorg. Med. Chem. Lett. 2009;19:710–713. doi: 10.1016/j.bmcl.2008.12.043. [DOI] [PubMed] [Google Scholar]
  • 75.Wang Y., Shen Y.-H., Jin H.-Z., Fu J.-J., Hu X.-J., Qin J.-J., Liu J.-H., Chen M., Yan S.-K., Zhang W.-D. Ainsliatrimers A and B, the first two guaianolide trimers from Ainsliaea fulvioides. Org. Lett. 2008;10:5517–5520. doi: 10.1021/ol802249z. [DOI] [PubMed] [Google Scholar]
  • 76.Ding N. Ph.D. Thesis. Nanjing University of Chinese Medicine; Nanjing, China: 2022. Study on the Chemical Constituents and Biological Activities of Two Medicinal Plants from Ainsliaea Genus. [DOI] [Google Scholar]
  • 77.Strapasson R.L.B., Cervi A.C., Carvalho J.E., Ruiz A.L.T.G., Salvador M.J., Stefanello M.A. Bioactivity-guided Isolation of Cytotoxic Sesquiterpene Lactones of Gochnatia polymorpha ssp. floccosa. Phytother. Res. 2012;26:1053–1056. doi: 10.1002/ptr.3693. [DOI] [PubMed] [Google Scholar]
  • 78.Ding N., Wang J., Liu J., Zhu Y., Hou S., Zhao H., Yang Y., Chen X., Hu L., Wang X. Cytotoxic guaianolide sesquiterpe-noids from Ainsliaea fragrans. J. Nat. Prod. 2021;84:2568–2574. doi: 10.1021/acs.jnatprod.1c00587. [DOI] [PubMed] [Google Scholar]
  • 79.Ren Y.-M., Zhang R., Feng Z., Ke C.-Q., Yao S., Tang C., Lin L., Ye Y. Macrocephatriolides A and B: Two guaianolide trimers from Ainsliaea macrocephala as PTP1B inhibitors insulin sensitizers. J. Org. Chem. 2021;86:17782–17789. doi: 10.1021/acs.joc.1c01996. [DOI] [PubMed] [Google Scholar]
  • 80.Zhang R., Tang C., Liu H.-C., Ren Y., Xu C.-H., Ke C.-Q., Yao S., Huang X., Ye Y. Ainsliatriolides A and B: Two guaianolide trimers from Ainsliaea fragrans their cytotoxic activities. J. Org. Chem. 2018;83:14175–14180. doi: 10.1021/acs.joc.8b02346. [DOI] [PubMed] [Google Scholar]
  • 81.Zhou N., Li J.-J., Wu Y., Wang Z.-Y., Yin Z.-P., Wang X.-P., Liu Y.-R., Shang X.-Y. New polymerized sesquiterpene lactones from Ainsliaea yunnanensis and their activity evaluation. Nat. Prod. Res. 2021;36:4862–4868. doi: 10.1080/14786419.2021.1904924. [DOI] [PubMed] [Google Scholar]
  • 82.Granica S., Lohwasser U., Jöhrer K., Zidorn C. Qualitative and quantitative analyses of secondary metabolites in aerial and subaerial of Scorzonera hispanica L. (black salsify) Food Chem. 2015;173:321–331. doi: 10.1016/j.foodchem.2014.10.006. [DOI] [PubMed] [Google Scholar]
  • 83.Wang R., Liu L.L., Shi Y.P. Pubescone, a novel 11 (7→6) abeo-14-norcarabrane sesquiterpenoid from Siegesbeckia pubescens. Helv. Chim. Acta. 2010;93:2081–2085. doi: 10.1002/hlca.201000034. [DOI] [Google Scholar]
  • 84.Dekebo A., Dagne E., Sterner O. Furanosesquiterpenes from Commiphora sphaerocarpa and related adulterants of true myrrh. Fitoterapia. 2002;73:48–55. doi: 10.1016/S0367-326X(01)00367-7. [DOI] [PubMed] [Google Scholar]
  • 85.Dong S., Tang J.-J., Zhang C.-C., Tian J.-M., Guo J.-T., Zhang Q., Li H., Gao J.-M. Semisynthesis in vitro cytotoxic evaluation of new analogues of 1-O-acetylbritannilactone a sesquiterpene from Inula britannica. Eur. J. Med. Chem. 2014;80:71–82. doi: 10.1016/j.ejmech.2014.04.028. [DOI] [PubMed] [Google Scholar]
  • 86.Qin J.-J., Jin H.-Z., Zhu J.-X., Fu J.-J., Zeng Q., Cheng X.-R., Zhu Y., Shan L., Zhang S.-D., Pan Y.-X., et al. New sesquiterpenes from Inula japonica Thunb with their inhibitory activities against LPS-induced NO production in RAW264.7 macrophages. Tetrahedron. 2010;66:9379–9388. doi: 10.1016/j.tet.2010.09.091. [DOI] [Google Scholar]
  • 87.Chuang L.-F., Fan T.-Y., Li J.-J., Sung P.-J. Kobusone: Occurrence of a norsesquiterpenoid in the gorgonian coral Rumphella antipathies (Gorgoniidae) Biochem. Syst. Ecol. 2007;35:470–471. doi: 10.1016/j.bse.2007.01.007. [DOI] [Google Scholar]
  • 88.Yukawa C., Iwabuchi H., Komemushi S., Sawabe A. Mono- and sesquiterpenoids of the volatile oil of Bursera graveolens. Flavour Fragr. J. 2005;20:653–658. doi: 10.1002/ffj.1523. [DOI] [Google Scholar]
  • 89.Heymann H., Tezuka Y., Kikuchi T., Supriyatna S. CConstituents of Sindora sumatrana MIQ: I. isolation and NMR spectral analysis of sesquiterpenes from the dried pods. Chem. Pharm. Bull. 1994;42:138–146. doi: 10.1248/cpb.42.138. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Not applicable.


Articles from Molecules are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES