Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Sep 15;503(Pt 3):613–623. doi: 10.1111/j.1469-7793.1997.613bg.x

Two components of blood-brain barrier disruption in the rat.

A S Easton 1, M H Sarker 1, P A Fraser 1
PMCID: PMC1159845  PMID: 9379415

Abstract

1. Permeability of pial venular capillaries to Lucifer Yellow (PLY) was measured using the single microvessel occlusion technique. 2. PLY was extremely low, when measured shortly after the removal of the meninges, consistent with an intact blood-brain barrier, but rose spontaneously to (1.65 +/- 0.60) x 10(-6) cm s-1 (mean +/- S.D.) within 20-60 min. This first phase of spontaneous disruption lasted 44-164 min. A second phase started when PLY rose sharply, and was characterized by rapid permeability fluctuations with a mean of (12.31 +/- 15.14) x 10(-6) cm s-1. 3. The first phase could be mimicked by applying the divalent cation ionophore A23187 in the presence of Ca2+, when PLY rose by (1.47 +/- 0.25) x 10(-6) cm s-1 (mean +/- S.E.M.). Application of histamine (10 microM) to tight vessels increased PLY by (2.41 +/- 0.22) x 10(-6) cm s-1. 4. Substances that raised intraendothelial cAMP of vessels during the first phase of disruption reduced PLY to the initial blood-brain barrier level. 5. The second phase could be prevented by applying catalase. Similar high and fluctuating PLY values could be produced reversibly by applying arachidonic acid or NH4Cl. 6. This is the first report of two distinct types of permeability increase in the cerebral microvasculature, and reasons for this are discussed.

Full text

PDF
613

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Butt A. M., Jones H. C., Abbott N. J. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990 Oct;429:47–62. doi: 10.1113/jphysiol.1990.sp018243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Butt A. M., Jones H. C. Effect of histamine and antagonists on electrical resistance across the blood-brain barrier in rat brain-surface microvessels. Brain Res. 1992 Jan 8;569(1):100–105. doi: 10.1016/0006-8993(92)90374-i. [DOI] [PubMed] [Google Scholar]
  3. Chan P. H., Fishman R. A. The role of arachidonic acid in vasogenic brain edema. Fed Proc. 1984 Feb;43(2):210–213. [PubMed] [Google Scholar]
  4. Crone C., Olesen S. P. Electrical resistance of brain microvascular endothelium. Brain Res. 1982 Jun 3;241(1):49–55. doi: 10.1016/0006-8993(82)91227-6. [DOI] [PubMed] [Google Scholar]
  5. Easton A. S., Fraser P. A. Variable restriction of albumin diffusion across inflamed cerebral microvessels of the anaesthetized rat. J Physiol. 1994 Feb 15;475(1):147–157. doi: 10.1113/jphysiol.1994.sp020056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fraser P. A., Dallas A. D., Davies S. Measurement of filtration coefficient in single cerebral microvessels of the frog. J Physiol. 1990 Apr;423:343–361. doi: 10.1113/jphysiol.1990.sp018026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fraser P. A., Dallas A. D. Permeability of disrupted cerebral microvessels in the frog. J Physiol. 1993 Feb;461:619–632. doi: 10.1113/jphysiol.1993.sp019532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gross P. M., Teasdale G. M., Graham D. I., Angerson W. J., Harper A. M. Intra-arterial histamine increases blood-brain transport in rats. Am J Physiol. 1982 Aug;243(2):H307–H317. doi: 10.1152/ajpheart.1982.243.2.H307. [DOI] [PubMed] [Google Scholar]
  9. Häggendal E., Johansson B. On the pathophysiology of the increased cerebrovascular permeability in acute arterial hypertension in cats. Acta Neurol Scand. 1972;48(3):265–270. doi: 10.1111/j.1600-0404.1972.tb07547.x. [DOI] [PubMed] [Google Scholar]
  10. Koenig H., Goldstone A. D., Lu C. Y. Polyamines mediate the reversible opening of the blood-brain barrier by the intracarotid infusion of hyperosmolal mannitol. Brain Res. 1989 Mar 27;483(1):110–116. doi: 10.1016/0006-8993(89)90040-1. [DOI] [PubMed] [Google Scholar]
  11. Kontos H. A., Wei E. P., Ellis E. F., Jenkins L. W., Povlishock J. T., Rowe G. T., Hess M. L. Appearance of superoxide anion radical in cerebral extracellular space during increased prostaglandin synthesis in cats. Circ Res. 1985 Jul;57(1):142–151. doi: 10.1161/01.res.57.1.142. [DOI] [PubMed] [Google Scholar]
  12. Luthert P. J., Greenwood J., Pratt O. E., Lantos P. L. The effect of a metabolic inhibitor upon the properties of the cerebral vasculature during a whole-head saline perfusion of the rat. Q J Exp Physiol. 1987 Jan;72(1):129–141. doi: 10.1113/expphysiol.1987.sp003038. [DOI] [PubMed] [Google Scholar]
  13. Ohnishi T., Posner J. B., Shapiro W. R. Vasogenic brain edema induced by arachidonic acid: role of extracellular arachidonic acid in blood-brain barrier dysfunction. Neurosurgery. 1992 Apr;30(4):545–551. doi: 10.1227/00006123-199204000-00012. [DOI] [PubMed] [Google Scholar]
  14. Olesen S. P., Crone C. Substances that rapidly augment ionic conductance of endothelium in cerebral venules. Acta Physiol Scand. 1986 Jun;127(2):233–241. doi: 10.1111/j.1748-1716.1986.tb07898.x. [DOI] [PubMed] [Google Scholar]
  15. Olesen S. P. Regulation of ion permeability in frog brain venules. Significance of calcium, cyclic nucleotides and protein kinase C. J Physiol. 1987 Jun;387:59–68. doi: 10.1113/jphysiol.1987.sp016562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rapoport S. I., Fredericks W. R., Ohno K., Pettigrew K. D. Quantitative aspects of reversible osmotic opening of the blood-brain barrier. Am J Physiol. 1980 May;238(5):R421–R431. doi: 10.1152/ajpregu.1980.238.5.R421. [DOI] [PubMed] [Google Scholar]
  17. Robinson P. J., Rapoport S. I. Size selectivity of blood-brain barrier permeability at various times after osmotic opening. Am J Physiol. 1987 Sep;253(3 Pt 2):R459–R466. doi: 10.1152/ajpregu.1987.253.3.R459. [DOI] [PubMed] [Google Scholar]
  18. Rubin L. L., Hall D. E., Porter S., Barbu K., Cannon C., Horner H. C., Janatpour M., Liaw C. W., Manning K., Morales J. A cell culture model of the blood-brain barrier. J Cell Biol. 1991 Dec;115(6):1725–1735. doi: 10.1083/jcb.115.6.1725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schilling L., Wahl M. Opening of the blood-brain barrier during cortical superfusion with histamine. Brain Res. 1994 Aug 8;653(1-2):289–296. doi: 10.1016/0006-8993(94)90403-0. [DOI] [PubMed] [Google Scholar]
  20. Takasato Y., Rapoport S. I., Smith Q. R. An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol. 1984 Sep;247(3 Pt 2):H484–H493. doi: 10.1152/ajpheart.1984.247.3.H484. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES