Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Sep 1;503(Pt 2):347–352. doi: 10.1111/j.1469-7793.1997.347bh.x

Tetrahydrobiopterin regulates cyclic GMP-dependent electrogenic Cl- secretion in mouse ileum in vitro.

V E Rolfe 1, M P Brand 1, S J Heales 1, K J Lindley 1, P J Milla 1
PMCID: PMC1159867  PMID: 9306277

Abstract

1. Basal electrogenic Cl- secretion, measured as the short-circuit current (Isc), was variable in ileum removed from tetrahydrobiopterin (BH4)-deficient hph-1 mice and wild-type controls in vitro, although values were not significantly different. 2. The basal nitrite release and mucosal cyclic guanosine 3',5'-monophosphate (cyclic GMP) production were similar in control and BH4-deficient ileum. 3. Mucosally added Escherichia coli heat-stable toxin (STa, 55 ng ml-1) increased the nitrite release, cyclic GMP levels and the Isc in control ileum, but its secretory actions were reduced in BH4-deficient ileum. 4. L-Arginine (1 mM) increased the nitrite release, cyclic GMP production and the Isc in control ileum, but the actions were reduced in BH4-deficient ileum. 5. Serosal carbachol (1 mM) stimulated maximum short-circuit currents of similar magnitude in both control and BH4-deficient ileum, whilst nitrite release and cyclic GMP production were minimal. 6. E. coli STa and L-arginine increased electrogenic Cl- secretion across intact mouse ileum in vitro by releasing nitric oxide and elevating mucosal cyclic GMP. The inhibition of these processes in the hph-1 mouse ileum suggests that BH4 may be a target for the modulation of electrogenic transport, and highlight the complexity of the interactions between nitric oxide and cyclic GMP in the gut.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aimi Y., Kimura H., Kinoshita T., Minami Y., Fujimura M., Vincent S. R. Histochemical localization of nitric oxide synthase in rat enteric nervous system. Neuroscience. 1993 Mar;53(2):553–560. doi: 10.1016/0306-4522(93)90220-a. [DOI] [PubMed] [Google Scholar]
  2. Alican I., Kubes P. A critical role for nitric oxide in intestinal barrier function and dysfunction. Am J Physiol. 1996 Feb;270(2 Pt 1):G225–G237. doi: 10.1152/ajpgi.1996.270.2.G225. [DOI] [PubMed] [Google Scholar]
  3. Archer S. Measurement of nitric oxide in biological models. FASEB J. 1993 Feb 1;7(2):349–360. doi: 10.1096/fasebj.7.2.8440411. [DOI] [PubMed] [Google Scholar]
  4. Brand M. P., Heales S. J., Land J. M., Clark J. B. Tetrahydrobiopterin deficiency and brain nitric oxide synthase in the hph1 mouse. J Inherit Metab Dis. 1995;18(1):33–39. doi: 10.1007/BF00711370. [DOI] [PubMed] [Google Scholar]
  5. Brandwein H. J., Lewicki J. A., Murad F. Reversible inactivation of guanylate cyclase by mixed disulfide formation. J Biol Chem. 1981 Mar 25;256(6):2958–2962. [PubMed] [Google Scholar]
  6. Field M., Graf L. H., Jr, Laird W. J., Smith P. L. Heat-stable enterotoxin of Escherichia coli: in vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2800–2804. doi: 10.1073/pnas.75.6.2800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Griscavage J. M., Fukuto J. M., Komori Y., Ignarro L. J. Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heme prosthetic group. Role of tetrahydrobiopterin in modulating the inhibitory action of nitric oxide. J Biol Chem. 1994 Aug 26;269(34):21644–21649. [PubMed] [Google Scholar]
  8. Kuhn M., Adermann K., Jähne J., Forssmann W. G., Rechkemmer G. Segmental differences in the effects of guanylin and Escherichia coli heat-stable enterotoxin on Cl- secretion in human gut. J Physiol. 1994 Sep 15;479(Pt 3):433–440. doi: 10.1113/jphysiol.1994.sp020307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. MacNaughton W. K. Nitric oxide-donating compounds stimulate electrolyte transport in the guinea pig intestine in vitro. Life Sci. 1993;53(7):585–593. doi: 10.1016/0024-3205(93)90716-g. [DOI] [PubMed] [Google Scholar]
  10. Mascolo N., Izzo A. A., Autore G., Barbato F., Capasso F. Nitric oxide and castor oil-induced diarrhea. J Pharmacol Exp Ther. 1994 Jan;268(1):291–295. [PubMed] [Google Scholar]
  11. McDonald J. D., Bode V. C. Hyperphenylalaninemia in the hph-1 mouse mutant. Pediatr Res. 1988 Jan;23(1):63–67. doi: 10.1203/00006450-198801000-00014. [DOI] [PubMed] [Google Scholar]
  12. Mourad F. H., O'Donnell L. J., Dias J. A., Ogutu E., Andre E. A., Turvill J. L., Farthing M. J. Role of 5-hydroxytryptamine type 3 receptors in rat intestinal fluid and electrolyte secretion induced by cholera and Escherichia coli enterotoxins. Gut. 1995 Sep;37(3):340–345. doi: 10.1136/gut.37.3.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rolfe V., Levin R. J. Enterotoxin Escherichia coli STa activates a nitric oxide-dependent myenteric plexus secretory reflex in the rat ileum. J Physiol. 1994 Mar 15;475(3):531–537. doi: 10.1113/jphysiol.1994.sp020091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schini-Kerth V. B., Vanhoutte P. M. Nitric oxide synthases in vascular cells. Exp Physiol. 1995 Nov;80(6):885–905. doi: 10.1113/expphysiol.1995.sp003904. [DOI] [PubMed] [Google Scholar]
  15. Stack W. A., Filipowicz B., Hawkey C. J. Nitric oxide donating compounds stimulate human colonic ion transport in vitro. Gut. 1996 Jul;39(1):93–99. doi: 10.1136/gut.39.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vanderwinden J. M., De Laet M. H., Schiffmann S. N., Mailleux P., Lowenstein C. J., Snyder S. H., Vanderhaeghen J. J. Nitric oxide synthase distribution in the enteric nervous system of Hirschsprung's disease. Gastroenterology. 1993 Oct;105(4):969–973. doi: 10.1016/0016-5085(93)90938-9. [DOI] [PubMed] [Google Scholar]
  17. de Jonge H. R. Properties of guanylate cyclase and levels of cyclic GMP in rat small intestinal villous and crypt cells. FEBS Lett. 1975 Jul 15;55(1):143–152. doi: 10.1016/0014-5793(75)80980-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES