Abstract
1. The regulation of the hyperpolarization-activated cation current, Ih, in thalamocortical neurones by intracellular calcium ions has been implemented in a number of mathematical models on the waxing and waning behaviour of synchronized rhythmic activity in thalamocortical circuits. In the present study, the Ca2+ dependence of Ih in thalamocortical neurones was experimentally investigated by combining Ca2+ imaging and patch-clamp techniques in the ventrobasal thalamic complex (VB) in vitro. 2. Properties of Ih were analysed before and during rhythmic stimulation of Ca2+ entry by trains of depolarizing voltage pulses. Despite a significant increase in intracellular Ca2+ concentration ([Ca2+]i) from resting levels of 74 +/- 23 nM to 251 +/- 78 nM upon rhythmic stimulation, significant differences in the voltage dependence of Ih activation did not occur (half-maximal activation at -86.4 +/- 1.3 mV vs. -85.2 +/- 2.9 mV; slope of the activation curve, 11.2 +/- 2.4 mV vs. 12.5 +/- 2.5 mV). Recording of Ih with predefined values of [Ca2+]i (13.2 nM or 10.01 microM in the patch pipette) revealed no significant differences in the activation curve or the fully activated I-V relationship of Ih. 3. In comparison, stimulation of the intracellular cyclic adenosine monophosphate (cAMP) pathway induced a significantly positive shift in Ih voltage dependence of +5.1 +/- 1.9 mV, with no alteration in the fully activated I-V relationship. 4. These data argue against a direct regulation of Ih by intracellular Ca2+, and particularly do not support a primary role of Ca(2+)-dependent modulation of the Ih channels in the waxing and waning of sleep spindle oscillations in thalamocortical neurones.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bal T., McCormick D. A. What stops synchronized thalamocortical oscillations? Neuron. 1996 Aug;17(2):297–308. doi: 10.1016/s0896-6273(00)80161-0. [DOI] [PubMed] [Google Scholar]
- Bayliss D. A., Viana F., Bellingham M. C., Berger A. J. Characteristics and postnatal development of a hyperpolarization-activated inward current in rat hypoglossal motoneurons in vitro. J Neurophysiol. 1994 Jan;71(1):119–128. doi: 10.1152/jn.1994.71.1.119. [DOI] [PubMed] [Google Scholar]
- Bers D. M., Patton C. W., Nuccitelli R. A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol. 1994;40:3–29. doi: 10.1016/s0091-679x(08)61108-5. [DOI] [PubMed] [Google Scholar]
- Contreras D., Destexhe A., Sejnowski T. J., Steriade M. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science. 1996 Nov 1;274(5288):771–774. doi: 10.1126/science.274.5288.771. [DOI] [PubMed] [Google Scholar]
- Contreras D., Steriade M. Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. J Physiol. 1996 Jan 1;490(Pt 1):159–179. doi: 10.1113/jphysiol.1996.sp021133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Destexhe A., Bal T., McCormick D. A., Sejnowski T. J. Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol. 1996 Sep;76(3):2049–2070. doi: 10.1152/jn.1996.76.3.2049. [DOI] [PubMed] [Google Scholar]
- Hagiwara N., Irisawa H. Modulation by intracellular Ca2+ of the hyperpolarization-activated inward current in rabbit single sino-atrial node cells. J Physiol. 1989 Feb;409:121–141. doi: 10.1113/jphysiol.1989.sp017488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ingram S. L., Williams J. T. Modulation of the hyperpolarization-activated current (Ih) by cyclic nucleotides in guinea-pig primary afferent neurons. J Physiol. 1996 Apr 1;492(Pt 1):97–106. doi: 10.1113/jphysiol.1996.sp021292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kao J. P. Practical aspects of measuring [Ca2+] with fluorescent indicators. Methods Cell Biol. 1994;40:155–181. doi: 10.1016/s0091-679x(08)61114-0. [DOI] [PubMed] [Google Scholar]
- McCormick D. A., Bal T. Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci. 1997;20:185–215. doi: 10.1146/annurev.neuro.20.1.185. [DOI] [PubMed] [Google Scholar]
- McCormick D. A., Pape H. C. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol. 1990 Dec;431:291–318. doi: 10.1113/jphysiol.1990.sp018331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neher E. Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol. 1992;207:123–131. doi: 10.1016/0076-6879(92)07008-c. [DOI] [PubMed] [Google Scholar]
- Pape H. C. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol. 1996;58:299–327. doi: 10.1146/annurev.ph.58.030196.001503. [DOI] [PubMed] [Google Scholar]
- Pape H. C. Specific bradycardic agents block the hyperpolarization-activated cation current in central neurons. Neuroscience. 1994 Mar;59(2):363–373. doi: 10.1016/0306-4522(94)90602-5. [DOI] [PubMed] [Google Scholar]
- Soltesz I., Lightowler S., Leresche N., Jassik-Gerschenfeld D., Pollard C. E., Crunelli V. Two inward currents and the transformation of low-frequency oscillations of rat and cat thalamocortical cells. J Physiol. 1991 Sep;441:175–197. doi: 10.1113/jphysiol.1991.sp018745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steriade M., McCormick D. A., Sejnowski T. J. Thalamocortical oscillations in the sleeping and aroused brain. Science. 1993 Oct 29;262(5134):679–685. doi: 10.1126/science.8235588. [DOI] [PubMed] [Google Scholar]
- Terman D., Bose A., Kopell N. Functional reorganization in thalamocortical networks: transition between spindling and delta sleep rhythms. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15417–15422. doi: 10.1073/pnas.93.26.15417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watts A. E., Williams J. T., Henderson G. Baclofen inhibition of the hyperpolarization-activated cation current, Ih, in rat substantia nigra zona compacta neurons may be secondary to potassium current activation. J Neurophysiol. 1996 Oct;76(4):2262–2270. doi: 10.1152/jn.1996.76.4.2262. [DOI] [PubMed] [Google Scholar]
- Zaza A., Maccaferri G., Mangoni M., DiFrancesco D. Intracellular calcium does not directly modulate cardiac pacemaker (if) channels. Pflugers Arch. 1991 Dec;419(6):662–664. doi: 10.1007/BF00370312. [DOI] [PubMed] [Google Scholar]