Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Aug 15;503(Pt 1):111–117. doi: 10.1111/j.1469-7793.1997.111bi.x

Aminergic modulation of glycine release in a spinal network controlling swimming in Xenopus laevis.

J R McDearmid 1, J F Scrymgeour-Wedderburn 1, K T Sillar 1
PMCID: PMC1159891  PMID: 9288679

Abstract

1. Neuromodulators can effect changes in neural network function by strengthening or weakening synapses between neurons via presynaptic control of transmitter release. We have examined the effects of two biogenic amines on inhibitory connections of a spinal rhythm generator in Xenopus tad poles. 2. Glycinergic inhibitory potentials occurring mid-cycle in motoneurons during swimming activity are reduced by 5-hydroxytryptamine (5-HT; serotonin) and enhanced by noradrenaline (NA). These opposing effects on inhibitory synaptic strength are mediated presynaptically where 5-HT decreases and NA increases the probability of glycine release from inhibitory terminals. 3. The amines also have contrasting effects on swimming: 5-HT increased motor burst durations while NA reduced swimming frequency. Aminergic modulation of glycinergic transmission may thus control fundamental parameters of swimming and force the spinal network to generate opposite extremes of its spectrum of possible outputs.

Full text

PDF
111

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cohen A. H., Harris-Warrick R. M. Strychnine eliminates alternating motor output during fictive locomotion in the lamprey. Brain Res. 1984 Feb 13;293(1):164–167. doi: 10.1016/0006-8993(84)91464-1. [DOI] [PubMed] [Google Scholar]
  2. Dale N. Experimentally derived model for the locomotor pattern generator in the Xenopus embryo. J Physiol. 1995 Dec 1;489(Pt 2):489–510. doi: 10.1113/jphysiol.1995.sp021067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dale N., Ottersen O. P., Roberts A., Storm-Mathisen J. Inhibitory neurones of a motor pattern generator in Xenopus revealed by antibodies to glycine. Nature. 1986 Nov 20;324(6094):255–257. doi: 10.1038/324255a0. [DOI] [PubMed] [Google Scholar]
  4. Errchidi S., Hilaire G., Monteau R. Permanent release of noradrenaline modulates respiratory frequency in the newborn rat: an in vitro study. J Physiol. 1990 Oct;429:497–510. doi: 10.1113/jphysiol.1990.sp018269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Harris-Warrick R. M., Cohen A. H. Serotonin modulates the central pattern generator for locomotion in the isolated lamprey spinal cord. J Exp Biol. 1985 May;116:27–46. doi: 10.1242/jeb.116.1.27. [DOI] [PubMed] [Google Scholar]
  6. Lindsay A. D., Feldman J. L. Modulation of respiratory activity of neonatal rat phrenic motoneurones by serotonin. J Physiol. 1993 Feb;461:213–233. doi: 10.1113/jphysiol.1993.sp019510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mintz I., Gotow T., Triller A., Korn H. Effect of serotonergic afferents on quantal release at central inhibitory synapses. Science. 1989 Jul 14;245(4914):190–192. doi: 10.1126/science.2749257. [DOI] [PubMed] [Google Scholar]
  8. Shupliakov O., Pieribone V. A., Gad H., Brodin L. Synaptic vesicle depletion in reticulospinal axons is reduced by 5-hydroxytryptamine: direct evidence for presynaptic modulation of glutamatergic transmission. Eur J Neurosci. 1995 May 1;7(5):1111–1116. doi: 10.1111/j.1460-9568.1995.tb01099.x. [DOI] [PubMed] [Google Scholar]
  9. Sillar K. T., Wedderburn J. F., Simmers A. J. Modulation of swimming rhythmicity by 5-hydroxytryptamine during post-embryonic development in Xenopus laevis. Proc Biol Sci. 1992 Nov 23;250(1328):107–114. doi: 10.1098/rspb.1992.0137. [DOI] [PubMed] [Google Scholar]
  10. Soffe S. R. Ionic and pharmacological properties of reciprocal inhibition in Xenopus embryo motoneurones. J Physiol. 1987 Jan;382:463–473. doi: 10.1113/jphysiol.1987.sp016378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wall M. J., Dale N. GABAB receptors modulate glycinergic inhibition and spike threshold in Xenopus embryo spinal neurones. J Physiol. 1993 Sep;469:275–290. doi: 10.1113/jphysiol.1993.sp019814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wallén P., Buchanan J. T., Grillner S., Hill R. H., Christenson J., Hökfelt T. Effects of 5-hydroxytryptamine on the afterhyperpolarization, spike frequency regulation, and oscillatory membrane properties in lamprey spinal cord neurons. J Neurophysiol. 1989 Apr;61(4):759–768. doi: 10.1152/jn.1989.61.4.759. [DOI] [PubMed] [Google Scholar]
  13. Yawo H. Noradrenaline modulates transmitter release by enhancing the Ca2+ sensitivity of exocytosis in the chick ciliary presynaptic terminal. J Physiol. 1996 Jun 1;493(Pt 2):385–391. doi: 10.1113/jphysiol.1996.sp021390. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES