Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Aug 15;503(Pt 1):203–213. doi: 10.1111/j.1469-7793.1997.203bi.x

A comparison of the ventilatory response of sleeping newborn lambs to step and progressive hypoxaemia.

G Cohen 1, G Malcolm 1, D Henderson-Smart 1
PMCID: PMC1159900  PMID: 9288688

Abstract

1. Slight variations in the rate at which hypoxaemia develops may significantly alter the ventilatory response (VR) elicited. Here we have developed a technique to compare the VRs elicited from sleeping newborn lambs by specific (step versus progressive), short-duration (< or = 5 min) episodes of hypoxaemia. The results may help us understand the limitations of using tests which deliver poorly defined stimuli to evaluate the postnatal development of the oxygen chemoreflex. 2. The VRs of five lambs elicited by a 5 min step or progressive reduction in the arterial oxygen saturation (Sa,O2) during quiet sleep were compared. Minute ventilation (V1, face mask) and Sa,O2 (pulse oximeter) were measured continuously. Alternate step (Sa,O2 reduced to 80-85% within 60 s and maintained for a further 4 min) and progressive tests (progressive reduction in Sa,O2 to 80% over 5 min) were administered daily between postnatal days 2-14. 3. There was a significant difference between the mean VR to step versus progressive hypoxaemia. The VR to a step challenge was biphasic (delta Vi = +32 +/- 5% at 1 min and -1 +/- 4% at 5 min; mean +/- S.E.M.). Progressive hypoxaemia elicited a more subdued but sustained hyperpnoea (delta Vi = +11 +/- 2% at 1 min and +11 +/- 4% at 5 min). The difference between these two response profiles was statistically significant (P < 0.001). 4. Mean responses of lambs aged < or = 5 days (4 +/- 0.2 days) and > or = 9 days (10 +/- 0.3 days) were also compared. There was an upward shift in the position of step and progressive response curves of older lambs, reflecting primarily the increased vigour of the initial hyperpnoea elicited by step (delta Vi at 1 min = +20 +/- 4% at 4 days vs. +40 +/- 11% at 10 days) as well as progressive (delta Vi at 1 min = +6 +/- 2% at 4 days vs. +17 +/- 5% at 10 days) hypoxaemia. 5. Qualitatively different VRs may be elicited from the newborn, depending upon the specific hypoxaemic profile administered. Therefore, to evaluate the significance of VRs elicited in response to classical, steady-state hypoxia at different postnatal ages properly, the stimulus must be accurately described.

Full text

PDF
203

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacon D. S., Afifi M. S., Griebel J. A., Camporesi E. M. Cerebrocortical oxygenation and ventilatory response during sustained hypoxia. Respir Physiol. 1990 May-Jun;80(2-3):245–257. doi: 10.1016/0034-5687(90)90087-f. [DOI] [PubMed] [Google Scholar]
  2. Belenky D. A., Standaert T. A., Woodrum D. E. Maturation of hypoxic ventilatory response of the newborn lamb. J Appl Physiol Respir Environ Exerc Physiol. 1979 Nov;47(5):927–930. doi: 10.1152/jappl.1979.47.5.927. [DOI] [PubMed] [Google Scholar]
  3. Blanco C. E., Dawes G. S., Hanson M. A., McCooke H. B. The response to hypoxia of arterial chemoreceptors in fetal sheep and new-born lambs. J Physiol. 1984 Jun;351:25–37. doi: 10.1113/jphysiol.1984.sp015229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boddy K., Dawes G. S., Fisher R., Pinter S., Robinson J. S. Foetal respiratory movements, electrocortical and cardiovascular responses to hypoxaemia and hypercapnia in sheep. J Physiol. 1974 Dec;243(3):599–618. doi: 10.1113/jphysiol.1974.sp010768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bonora M., Marlot D., Gautier H., Duron B. Effects of hypoxia on ventilation during postnatal development in conscious kittens. J Appl Physiol Respir Environ Exerc Physiol. 1984 Jun;56(6):1464–1471. doi: 10.1152/jappl.1984.56.6.1464. [DOI] [PubMed] [Google Scholar]
  6. Brady J. P., Ceruti E. Chemoreceptor reflexes in the new-born infant: effects of varying degrees of hypoxia on heart rate and ventilation in a warm environment. J Physiol. 1966 Jun;184(3):631–645. doi: 10.1113/jphysiol.1966.sp007936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bureau M. A., Bégin R. Postnatal maturation of the respiratory response to O2 in awake newborn lambs. J Appl Physiol Respir Environ Exerc Physiol. 1982 Feb;52(2):428–433. doi: 10.1152/jappl.1982.52.2.428. [DOI] [PubMed] [Google Scholar]
  8. Bureau M. A., Côté A., Blanchard P. W., Hobbs S., Foulon P., Dalle D. Exponential and diphasic ventilatory response to hypoxia in conscious lambs. J Appl Physiol (1985) 1986 Sep;61(3):836–842. doi: 10.1152/jappl.1986.61.3.836. [DOI] [PubMed] [Google Scholar]
  9. Bureau M. A., Lamarche J., Foulon P., Dalle D. The ventilatory response to hypoxia in the newborn lamb after carotid body denervation. Respir Physiol. 1985 Apr;60(1):109–119. doi: 10.1016/0034-5687(85)90043-x. [DOI] [PubMed] [Google Scholar]
  10. Bureau M. A., Zinman R., Foulon P., Begin R. Diphasic ventilatory response to hypoxia in newborn lambs. J Appl Physiol Respir Environ Exerc Physiol. 1984 Jan;56(1):84–90. doi: 10.1152/jappl.1984.56.1.84. [DOI] [PubMed] [Google Scholar]
  11. CROSS K. W., OPPE T. E. The effect of inhalation of high and low concentrations of oxygen on the respiration of the premature infant. J Physiol. 1952 May;117(1):38–55. [PMC free article] [PubMed] [Google Scholar]
  12. Carroll J. L., Bureau M. A. Decline in peripheral chemoreceptor excitatory stimulation during acute hypoxia in the lamb. J Appl Physiol (1985) 1987 Aug;63(2):795–802. doi: 10.1152/jappl.1987.63.2.795. [DOI] [PubMed] [Google Scholar]
  13. Cohen G., Henderson-Smart D. J. A modified rebreathing method to study the ventilatory response of the newborn to carbon dioxide. J Dev Physiol. 1990 Nov;14(5):295–301. [PubMed] [Google Scholar]
  14. Côté A., Yunis K., Blanchard P. W., Mortola J. P., Bureau M. A. Dynamics of breathing in the hypoxic awake lamb. J Appl Physiol (1985) 1988 Jan;64(1):354–359. doi: 10.1152/jappl.1988.64.1.354. [DOI] [PubMed] [Google Scholar]
  15. DAWES G. S., MOTT J. C., WIDDICOMBE J. G. The patency of the ductus arteriosus in newborn lambs and its physiological consequences. J Physiol. 1955 May 27;128(2):361–383. doi: 10.1113/jphysiol.1955.sp005313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dutton R. E., Hodson W. A., Davies D. G., Fenner A. Effect of the rate of rise of carotid body PCO2 on the time course of ventilation. Respir Physiol. 1967 Dec;3(3):367–379. doi: 10.1016/0034-5687(67)90065-5. [DOI] [PubMed] [Google Scholar]
  17. Eden G. J., Hanson M. A. Maturation of the respiratory response to acute hypoxia in the newborn rat. J Physiol. 1987 Nov;392:1–9. doi: 10.1113/jphysiol.1987.sp016765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Eyzaguirre C., Zapata P. Perspectives in carotid body research. J Appl Physiol Respir Environ Exerc Physiol. 1984 Oct;57(4):931–957. doi: 10.1152/jappl.1984.57.4.931. [DOI] [PubMed] [Google Scholar]
  19. Gozal D., Arens R., Omlin K. J., Marcus C. L., Keens T. G. Maturational differences in step vs. ramp hypoxic and hypercapnic ventilatory responses. J Appl Physiol (1985) 1994 May;76(5):1968–1975. doi: 10.1152/jappl.1994.76.5.1968. [DOI] [PubMed] [Google Scholar]
  20. Haddad G. G., Gandhi M. R., Mellins R. B. Maturation of ventilatory response to hypoxia in puppies during sleep. J Appl Physiol Respir Environ Exerc Physiol. 1982 Feb;52(2):309–314. doi: 10.1152/jappl.1982.52.2.309. [DOI] [PubMed] [Google Scholar]
  21. Henderson-Smart D. J., Read D. J. Ventilatory responses to hypoxaemia during sleep in the newborn. J Dev Physiol. 1979 Jun;1(3):195–208. [PubMed] [Google Scholar]
  22. Jeffery H. E., Read D. J. Ventilatory responses of newborn calves to progressive hypoxia in quiet and active sleep. J Appl Physiol Respir Environ Exerc Physiol. 1980 May;48(5):892–895. doi: 10.1152/jappl.1980.48.5.892. [DOI] [PubMed] [Google Scholar]
  23. Johnston B. M., Gluckman P. D. Peripheral chemoreceptors respond to hypoxia in pontine-lesioned fetal lambs in utero. J Appl Physiol (1985) 1993 Sep;75(3):1027–1034. doi: 10.1152/jappl.1993.75.3.1027. [DOI] [PubMed] [Google Scholar]
  24. Kumar P., Hanson M. A. Re-setting of the hypoxic sensitivity of aortic chemoreceptors in the new-born lamb. J Dev Physiol. 1989 Apr;11(4):199–206. [PubMed] [Google Scholar]
  25. LaFramboise W. A., Guthrie R. D., Standaert T. A., Woodrum D. E. Pulmonary mechanics during the ventilatory response to hypoxemia in the newborn monkey. J Appl Physiol Respir Environ Exerc Physiol. 1983 Sep;55(3):1008–1014. doi: 10.1152/jappl.1983.55.3.1008. [DOI] [PubMed] [Google Scholar]
  26. LaFramboise W. A., Standaert T. A., Woodrum D. E., Guthrie R. D. Occlusion pressures during the ventilatory response to hypoxemia in the newborn monkey. J Appl Physiol Respir Environ Exerc Physiol. 1981 Nov;51(5):1169–1174. doi: 10.1152/jappl.1981.51.5.1169. [DOI] [PubMed] [Google Scholar]
  27. Mahutte C. K., Rebuck A. S. Influence of rate of induction of hypoxia on the ventilatory response. J Physiol. 1978 Nov;284:219–227. doi: 10.1113/jphysiol.1978.sp012537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Marchal F., Bairam A., Haouzi P., Crance J. P., Di Giulio C., Vert P., Lahiri S. Carotid chemoreceptor response to natural stimuli in the newborn kitten. Respir Physiol. 1992 Feb;87(2):183–193. doi: 10.1016/0034-5687(92)90058-5. [DOI] [PubMed] [Google Scholar]
  29. Neubauer J. A., Santiago T. V., Posner M. A., Edelman N. H. Ventral medullary pH and ventilatory responses to hyperperfusion and hypoxia. J Appl Physiol (1985) 1985 May;58(5):1659–1668. doi: 10.1152/jappl.1985.58.5.1659. [DOI] [PubMed] [Google Scholar]
  30. Praud J. P., Canet E., Kianicka I., Gaultier C., Bureau M. Vagal and chemoreceptor influences on abdominal muscle activity in awake lambs during hypoxia. J Appl Physiol (1985) 1993 Apr;74(4):1689–1696. doi: 10.1152/jappl.1993.74.4.1689. [DOI] [PubMed] [Google Scholar]
  31. Purves M. J. The effects of hypoxia in the new-born lamb before and after denervation of the carotid chemoreceptors. J Physiol. 1966 Jul;185(1):60–77. doi: 10.1113/jphysiol.1966.sp007972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rigatto H., Brady J. P., de la Torre Verduzco R. Chemoreceptor reflexes in preterm infants: I. The effect of gestational and postnatal age on the ventilatory response to inhalation of 100% and 15% oxygen. Pediatrics. 1975 May;55(5):604–613. [PubMed] [Google Scholar]
  33. Rigatto H., Kwiatkowski K. A., Hasan S. U., Cates D. B. The ventilatory response to endogenous CO2 in preterm infants. Am Rev Respir Dis. 1991 Jan;143(1):101–104. doi: 10.1164/ajrccm/143.1.101. [DOI] [PubMed] [Google Scholar]
  34. Taylor M. B., Whitwam J. G. The accuracy of pulse oximeters. A comparative clinical evaluation of five pulse oximeters. Anaesthesia. 1988 Mar;43(3):229–232. doi: 10.1111/j.1365-2044.1988.tb05549.x. [DOI] [PubMed] [Google Scholar]
  35. Walker A. M., de Preu N. D. Preterm birth in lambs: sleep patterns and cardio-respiratory changes. J Dev Physiol. 1991 Sep;16(3):139–145. [PubMed] [Google Scholar]
  36. Woodrum D. E., Standaert T. A., Mayock D. E., Guthrie R. D. Hypoxic ventilatory response in the newborn monkey. Pediatr Res. 1981 Apr;15(4 Pt 1):367–370. doi: 10.1203/00006450-198104000-00016. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES