Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Oct 15;504(Pt 2):271–286. doi: 10.1111/j.1469-7793.1997.271be.x

Effects of development and thyroid hormone on K+ currents and K+ channel gene expression in rat ventricle.

A D Wickenden 1, R Kaprielian 1, T G Parker 1, O T Jones 1, P H Backx 1
PMCID: PMC1159909  PMID: 9365903

Abstract

1. In rat heart, three K+ channel genes that encode inactivating transient outward (ITO)-like currents are expressed. During development the predominant K+ channel mRNA species switches from Kv1.4 to Kv4.2 and Kv4.3. However, no functional correlate of this isoform switch has been reported. We investigated action potential characteristics and ITO in cultured neonatal rat ventricular myocytes and adult rat hearts. We further examined whether the changes in K+ channel gene expression and the associated electrophysiology that occurs during development could be induced by thyroid hormone. 2. In myocytes isolated from right ventricle of adult rat heart, action potential duration was short and independent of rate of stimulation. The density of ITO was 21.5 +/- 1.8 pA pF-1 (n = 21). Recovery from inactivation was best described by a single exponential (tau fast = 31.7 +/- 2.7 ms, n = 13). The current remaining at the end of a 500 ms pulse (ISUS) was 6.2 +/- 0.5 pA pF-1 (n = 19). 3. In contrast to adult cells, action potential duration was prolonged and was markedly rate dependent in cultured neonatal rat ventricular myocytes. The current density of ITO measured in cultured ventricular myocytes from 1- to 2-day-old rats was 10.1 +/- 1.5 pA pF-1 (n = 17). The recovery from inactivation for ITO was best described by the sum of two exponentials (tau fast = 64.3 +/- 8.8 ms, 54.4 +/- 10.2%; tau slow = 8216 +/- 2396 ms, 37.4 +/- 7.9%; n = 5). ISUS was 4.4 +/- 0.6 pA pF-1 (n = 17). Steady-state activation and inactivation were similar in adult and neonatal ventricular myocytes. 4. In neonatal myocytes treated with thyroid hormone, tri-iodothyronine (T3, 100 nM), action potential duration was abbreviated and independent of stimulation rate. Whilst T3 did not significantly increase ITO density (24.0 +/- 2.9 pA pF-1; n = 21 in T3 treated cells cf. 20.1 +/- 3.0 pA pF-1; n = 37 in untreated controls), the recovery from inactivation of ITO was accelerated (tau fast = 39.2 +/- 3.6 ms, 82.2 +/- 8.9%, n = 9). T3 did however, increase ISUS current density (4.7 +/- 0.77 pA pF-1; n = 37 and 7.0 +/- 0.7 pA pF-1, n = 21, in control and T3 treated cells, respectively. 5. The effects of T3 (100 nM) were associated with a marked decrease in the expression of Kv1.4 at the mRNA and protein level, and an increase in the expression of Kv4.3 without changes in Kv4.2 mRNA levels. 6. The findings of the present study indicate that postnatal development involves a shortening of action potential duration and an increase in the density of ITO. Furthermore, we show that development is also associated with a loss of action potential rate dependence, and an acceleration in the rate of recovery of ITO. We propose that these functional effects occur as a consequence of the previously reported developmental Kv1.4 to Kv4.2/Kv4.3 isoform switch. In cultured neonatal myocytes, T3 induced many of the electrophysiological and molecular changes that normally occur during postnatal development, suggesting that this hormone may play an important role in postnatal electrophysiological development.

Full text

PDF
271

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agus Z. S., Dukes I. D., Morad M. Divalent cations modulate the transient outward current in rat ventricular myocytes. Am J Physiol. 1991 Aug;261(2 Pt 1):C310–C318. doi: 10.1152/ajpcell.1991.261.2.C310. [DOI] [PubMed] [Google Scholar]
  2. Backx P. H., Marban E. Background potassium current active during the plateau of the action potential in guinea pig ventricular myocytes. Circ Res. 1993 Apr;72(4):890–900. doi: 10.1161/01.res.72.4.890. [DOI] [PubMed] [Google Scholar]
  3. Barry D. M., Trimmer J. S., Merlie J. P., Nerbonne J. M. Differential expression of voltage-gated K+ channel subunits in adult rat heart. Relation to functional K+ channels? Circ Res. 1995 Aug;77(2):361–369. doi: 10.1161/01.res.77.2.361. [DOI] [PubMed] [Google Scholar]
  4. Binah O., Rubinstein I., Gilat E. Effects of thyroid hormone on the action potential and membrane currents of guinea pig ventricular myocytes. Pflugers Arch. 1987 Jun;409(1-2):214–216. doi: 10.1007/BF00584774. [DOI] [PubMed] [Google Scholar]
  5. Chizzonite R. A., Zak R. Regulation of myosin isoenzyme composition in fetal and neonatal rat ventricle by endogenous thyroid hormones. J Biol Chem. 1984 Oct 25;259(20):12628–12632. [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Crumb W. J., Jr, Pigott J. D., Clarkson C. W. Comparison of Ito in young and adult human atrial myocytes: evidence for developmental changes. Am J Physiol. 1995 Mar;268(3 Pt 2):H1335–H1342. doi: 10.1152/ajpheart.1995.268.3.H1335. [DOI] [PubMed] [Google Scholar]
  8. Dixon J. E., McKinnon D. Quantitative analysis of potassium channel mRNA expression in atrial and ventricular muscle of rats. Circ Res. 1994 Aug;75(2):252–260. doi: 10.1161/01.res.75.2.252. [DOI] [PubMed] [Google Scholar]
  9. Dixon J. E., Shi W., Wang H. S., McDonald C., Yu H., Wymore R. S., Cohen I. S., McKinnon D. Role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current. Circ Res. 1996 Oct;79(4):659–668. doi: 10.1161/01.res.79.4.659. [DOI] [PubMed] [Google Scholar]
  10. Eichhorn E. J., Bristow M. R. Medical therapy can improve the biological properties of the chronically failing heart. A new era in the treatment of heart failure. Circulation. 1996 Nov 1;94(9):2285–2296. doi: 10.1161/01.cir.94.9.2285. [DOI] [PubMed] [Google Scholar]
  11. Gustafson T. A., Markham B. E., Bahl J. J., Morkin E. Thyroid hormone regulates expression of a transfected alpha-myosin heavy-chain fusion gene in fetal heart cells. Proc Natl Acad Sci U S A. 1987 May;84(10):3122–3126. doi: 10.1073/pnas.84.10.3122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hartshorne R. P., Catterall W. A. The sodium channel from rat brain. Purification and subunit composition. J Biol Chem. 1984 Feb 10;259(3):1667–1675. [PubMed] [Google Scholar]
  13. Hiraoka M., Kawano S. Mechanism of increased amplitude and duration of the plateau with sudden shortening of diastolic intervals in rabbit ventricular cells. Circ Res. 1987 Jan;60(1):14–26. doi: 10.1161/01.res.60.1.14. [DOI] [PubMed] [Google Scholar]
  14. Hoh J. F., McGrath P. A., Hale P. T. Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thyroxine replacement. J Mol Cell Cardiol. 1978 Nov;10(11):1053–1076. doi: 10.1016/0022-2828(78)90401-7. [DOI] [PubMed] [Google Scholar]
  15. Kilborn M. J., Fedida D. A study of the developmental changes in outward currents of rat ventricular myocytes. J Physiol. 1990 Nov;430:37–60. doi: 10.1113/jphysiol.1990.sp018280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kukushkin N. I., Gainullin R. Z., Sosunov E. A. Transient outward current and rate dependence of action potential duration in rabbit cardiac ventricular muscle. Pflugers Arch. 1983 Oct;399(2):87–92. doi: 10.1007/BF00663902. [DOI] [PubMed] [Google Scholar]
  17. Langer G. A., Brady A. J., Tan S. T., Serena D. Correlation of the glycoside response, the force staircase, and the action potential configuration in the neonatal rat heart. Circ Res. 1975 Jun;36(6):744–752. doi: 10.1161/01.res.36.6.744. [DOI] [PubMed] [Google Scholar]
  18. Lompre A. M., Schwartz K., d'Albis A., Lacombe G., Van Thiem N., Swynghedauw B. Myosin isoenzyme redistribution in chronic heart overload. Nature. 1979 Nov 1;282(5734):105–107. doi: 10.1038/282105a0. [DOI] [PubMed] [Google Scholar]
  19. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  20. Matsubara H., Suzuki J., Inada M. Shaker-related potassium channel, Kv1.4, mRNA regulation in cultured rat heart myocytes and differential expression of Kv1.4 and Kv1.5 genes in myocardial development and hypertrophy. J Clin Invest. 1993 Oct;92(4):1659–1666. doi: 10.1172/JCI116751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Orlowski J., Lingrel J. B. Thyroid and glucocorticoid hormones regulate the expression of multiple Na,K-ATPase genes in cultured neonatal rat cardiac myocytes. J Biol Chem. 1990 Feb 25;265(6):3462–3470. [PubMed] [Google Scholar]
  22. Pennock G. D., Raya T. E., Bahl J. J., Goldman S., Morkin E. Combination treatment with captopril and the thyroid hormone analogue 3,5-diiodothyropropionic acid. A new approach to improving left ventricular performance in heart failure. Circulation. 1993 Sep;88(3):1289–1298. doi: 10.1161/01.cir.88.3.1289. [DOI] [PubMed] [Google Scholar]
  23. Roberds S. L., Tamkun M. M. Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in rat heart. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1798–1802. doi: 10.1073/pnas.88.5.1798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Roberds S. L., Tamkun M. M. Developmental expression of cloned cardiac potassium channels. FEBS Lett. 1991 Jun 24;284(2):152–154. doi: 10.1016/0014-5793(91)80673-q. [DOI] [PubMed] [Google Scholar]
  25. Schwartz K., de la Bastie D., Bouveret P., Oliviéro P., Alonso S., Buckingham M. Alpha-skeletal muscle actin mRNA's accumulate in hypertrophied adult rat hearts. Circ Res. 1986 Nov;59(5):551–555. doi: 10.1161/01.res.59.5.551. [DOI] [PubMed] [Google Scholar]
  26. Serôdio P., Kentros C., Rudy B. Identification of molecular components of A-type channels activating at subthreshold potentials. J Neurophysiol. 1994 Oct;72(4):1516–1529. doi: 10.1152/jn.1994.72.4.1516. [DOI] [PubMed] [Google Scholar]
  27. Serôdio P., Vega-Saenz de Miera E., Rudy B. Cloning of a novel component of A-type K+ channels operating at subthreshold potentials with unique expression in heart and brain. J Neurophysiol. 1996 May;75(5):2174–2179. doi: 10.1152/jn.1996.75.5.2174. [DOI] [PubMed] [Google Scholar]
  28. Sheng M., Tsaur M. L., Jan Y. N., Jan L. Y. Subcellular segregation of two A-type K+ channel proteins in rat central neurons. Neuron. 1992 Aug;9(2):271–284. doi: 10.1016/0896-6273(92)90166-b. [DOI] [PubMed] [Google Scholar]
  29. Shimoni Y., Banno H., Clark R. B. Hyperthyroidism selectively modified a transient potassium current in rabbit ventricular and atrial myocytes. J Physiol. 1992 Nov;457:369–389. doi: 10.1113/jphysiol.1992.sp019383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shimoni Y., Fiset C., Clark R. B., Dixon J. E., McKinnon D., Giles W. R. Thyroid hormone regulates postnatal expression of transient K+ channel isoforms in rat ventricle. J Physiol. 1997 Apr 1;500(Pt 1):65–73. doi: 10.1113/jphysiol.1997.sp021999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shimoni Y., Severson D., Giles W. Thyroid status and diabetes modulate regional differences in potassium currents in rat ventricle. J Physiol. 1995 Nov 1;488(Pt 3):673–688. doi: 10.1113/jphysiol.1995.sp020999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Simpson P., Savion S. Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells. Cross-striations, ultrastructure, and chronotropic response to isoproterenol. Circ Res. 1982 Jan;50(1):101–116. doi: 10.1161/01.res.50.1.101. [DOI] [PubMed] [Google Scholar]
  33. Sánchez-Chapula J., Elizalde A., Navarro-Polanco R., Barajas H. Differences in outward currents between neonatal and adult rabbit ventricular cells. Am J Physiol. 1994 Mar;266(3 Pt 2):H1184–H1194. doi: 10.1152/ajpheart.1994.266.3.H1184. [DOI] [PubMed] [Google Scholar]
  34. Tseng-Crank J. C., Tseng G. N., Schwartz A., Tanouye M. A. Molecular cloning and functional expression of a potassium channel cDNA isolated from a rat cardiac library. FEBS Lett. 1990 Jul 30;268(1):63–68. doi: 10.1016/0014-5793(90)80973-m. [DOI] [PubMed] [Google Scholar]
  35. Wahler G. M., Dollinger S. J., Smith J. M., Flemal K. L. Time course of postnatal changes in rat heart action potential and in transient outward current is different. Am J Physiol. 1994 Sep;267(3 Pt 2):H1157–H1166. doi: 10.1152/ajpheart.1994.267.3.H1157. [DOI] [PubMed] [Google Scholar]
  36. Walker P., Dubois J. D., Dussault J. H. Free thyroid hormone concentrations during postnatal development in the rat. Pediatr Res. 1980 Mar;14(3):247–249. doi: 10.1203/00006450-198003000-00014. [DOI] [PubMed] [Google Scholar]
  37. Wang Z., Fermini B., Nattel S. Effects of flecainide, quinidine, and 4-aminopyridine on transient outward and ultrarapid delayed rectifier currents in human atrial myocytes. J Pharmacol Exp Ther. 1995 Jan;272(1):184–196. [PubMed] [Google Scholar]
  38. Xu H., Dixon J. E., Barry D. M., Trimmer J. S., Merlie J. P., McKinnon D., Nerbonne J. M. Developmental analysis reveals mismatches in the expression of K+ channel alpha subunits and voltage-gated K+ channel currents in rat ventricular myocytes. J Gen Physiol. 1996 Nov;108(5):405–419. doi: 10.1085/jgp.108.5.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yamagishi T., Ishii K., Taira N. Antiarrhythmic and bradycardic drugs inhibit currents of cloned K+ channels, KV1.2 and KV1.4. Eur J Pharmacol. 1995 Aug 4;281(2):151–159. doi: 10.1016/0014-2999(95)00240-l. [DOI] [PubMed] [Google Scholar]
  40. Yamashita T., Nakajima T., Hamada E., Hazama H., Omata M., Kurachi Y. Flecainide inhibits the transient outward current in atrial myocytes isolated from the rabbit heart. J Pharmacol Exp Ther. 1995 Jul;274(1):315–321. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES