Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Oct 15;504(Pt 2):337–347. doi: 10.1111/j.1469-7793.1997.337be.x

Muscarinic Ca2+ responses resistant to muscarinic antagonists at perisynaptic Schwann cells of the frog neuromuscular junction.

R Robitaille 1, B S Jahromi 1, M P Charlton 1
PMCID: PMC1159914  PMID: 9365908

Abstract

1. Acetylcholine causes a rise of intracellular Ca2+ in perisynaptic Schwann cells (PSCs) of the frog neuromuscular junction. The signalling pathway was characterized using the fluorescent Ca2+ indicator fluo-3 and fluorescence microscopy. 2. Nicotinic antagonists had no effect on Ca2+ responses evoked by ACh and no Ca2+ responses were evoked with the nicotinic agonist nicotine. The muscarinic agonists muscarine and oxotremorine-M induced Ca2+ signals in PSCs. 3. Ca2+ responses remained unchanged when extracellular Ca2+ was removed, indicating that they are due to the release of Ca2+ from internal stores. Incubation with pertussis toxin did not alter the Ca2+ signals induced by muscarine, but did block depression of transmitter release induced by adenosine and prevented Ca2+ responses in PSCs induced by adenosine. 4. The general muscarinic antagonists atropine, quinuclidinyl benzilate and N-methyl-scopolamine failed to block Ca2+ responses to muscarinic agonists. Atropine (at 20,000-fold excess concentration) also failed to reduce the proportion of cells responding to a threshold muscarine concentration sufficient to cause responses in less than 50% of cells. Only the allosteric, non-specific blocker, gallamine (1-10 microM) was effective in blocking muscarine-induced Ca2+ responses. 5. In preparations denervated 7 days prior to experiments, low concentrations of atropine reversibly and completely blocked Ca2+ responses to muscarine. 6. The lack of blockade by general muscarinic antagonists in innervated, in situ preparations suggests that muscarinic Ca2+ responses at PSCs are not mediated by any of the five known muscarinic receptors or that post-translational modification prevented antagonist binding.

Full text

PDF
337

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. J., Cohen M. W. Fluorescent staining of acetylcholine receptors in vertebrate skeletal muscle. J Physiol. 1974 Mar;237(2):385–400. doi: 10.1113/jphysiol.1974.sp010487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arslan P., Di Virgilio F., Beltrame M., Tsien R. Y., Pozzan T. Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+. J Biol Chem. 1985 Mar 10;260(5):2719–2727. [PubMed] [Google Scholar]
  3. Ashkenazi A., Peralta E. G., Winslow J. W., Ramachandran J., Capon D. J. Functionally distinct G proteins selectively couple different receptors to PI hydrolysis in the same cell. Cell. 1989 Feb 10;56(3):487–493. doi: 10.1016/0092-8674(89)90251-1. [DOI] [PubMed] [Google Scholar]
  4. BIRKS R., KATZ B., MILEDI R. Physiological and structural changes at the amphibian myoneural junction, in the course of nerve degeneration. J Physiol. 1960 Jan;150:145–168. doi: 10.1113/jphysiol.1960.sp006379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berstein G., Haga K., Haga T., Ichiyama A. Agonist and antagonist binding of muscarinic acetylcholine receptors purified from porcine brain: interconversion of high- and low-affinity sites by sulfhydryl reagents. J Neurochem. 1988 Jun;50(6):1687–1694. doi: 10.1111/j.1471-4159.1988.tb02464.x. [DOI] [PubMed] [Google Scholar]
  6. Bonner T. I., Buckley N. J., Young A. C., Brann M. R. Identification of a family of muscarinic acetylcholine receptor genes. Science. 1987 Jul 31;237(4814):527–532. doi: 10.1126/science.3037705. [DOI] [PubMed] [Google Scholar]
  7. Buckley N. J., Bonner T. I., Buckley C. M., Brann M. R. Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol. 1989 Apr;35(4):469–476. [PubMed] [Google Scholar]
  8. Changeux J. P. Compartmentalized transcription of acetylcholine receptor genes during motor endplate epigenesis. New Biol. 1991 May;3(5):413–429. [PubMed] [Google Scholar]
  9. Chiu S. Y., Kriegler S. Neurotransmitter-mediated signaling between axons and glial cells. Glia. 1994 Jun;11(2):191–200. doi: 10.1002/glia.440110213. [DOI] [PubMed] [Google Scholar]
  10. Dani J. W., Chernjavsky A., Smith S. J. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron. 1992 Mar;8(3):429–440. doi: 10.1016/0896-6273(92)90271-e. [DOI] [PubMed] [Google Scholar]
  11. Deneris E. S., Connolly J., Rogers S. W., Duvoisin R. Pharmacological and functional diversity of neuronal nicotinic acetylcholine receptors. Trends Pharmacol Sci. 1991 Jan;12(1):34–40. doi: 10.1016/0165-6147(91)90486-c. [DOI] [PubMed] [Google Scholar]
  12. Dennis M. J., Miledi R. Electrically induced release of acetylcholine from denervated Schwann cells. J Physiol. 1974 Mar;237(2):431–452. doi: 10.1113/jphysiol.1974.sp010490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Enkvist M. O., Holopainen I., Akerman K. E. Alpha-receptor and cholinergic receptor-linked changes in cytosolic Ca2+ and membrane potential in primary rat astrocytes. Brain Res. 1989 Oct 23;500(1-2):46–54. doi: 10.1016/0006-8993(89)90298-9. [DOI] [PubMed] [Google Scholar]
  14. Felder C. C. Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J. 1995 May;9(8):619–625. [PubMed] [Google Scholar]
  15. Fukuda K., Kubo T., Akiba I., Maeda A., Mishina M., Numa S. Molecular distinction between muscarinic acetylcholine receptor subtypes. Nature. 1987 Jun 18;327(6123):623–625. doi: 10.1038/327623a0. [DOI] [PubMed] [Google Scholar]
  16. Galzi J. L., Revah F., Bessis A., Changeux J. P. Functional architecture of the nicotinic acetylcholine receptor: from electric organ to brain. Annu Rev Pharmacol Toxicol. 1991;31:37–72. doi: 10.1146/annurev.pa.31.040191.000345. [DOI] [PubMed] [Google Scholar]
  17. Georgiou J., Robitaille R., Trimble W. S., Charlton M. P. Synaptic regulation of glial protein expression in vivo. Neuron. 1994 Feb;12(2):443–455. doi: 10.1016/0896-6273(94)90284-4. [DOI] [PubMed] [Google Scholar]
  18. Gibson I. C., Logan S. D. Effects of muscarinic receptor stimulation of sympathetic preganglionic neurones of neonatal rat spinal cord in vitro. Neuropharmacology. 1995 Mar;34(3):309–318. doi: 10.1016/0028-3908(94)00152-i. [DOI] [PubMed] [Google Scholar]
  19. Gray M. A., Tomlins B., Montgomery R. A., Williams A. J. Structural aspects of the sarcoplasmic reticulum K+ channel revealed by gallamine block. Biophys J. 1988 Aug;54(2):233–239. doi: 10.1016/S0006-3495(88)82952-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hille B. G protein-coupled mechanisms and nervous signaling. Neuron. 1992 Aug;9(2):187–195. doi: 10.1016/0896-6273(92)90158-a. [DOI] [PubMed] [Google Scholar]
  21. Hulme E. C., Birdsall N. J., Buckley N. J. Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol. 1990;30:633–673. doi: 10.1146/annurev.pa.30.040190.003221. [DOI] [PubMed] [Google Scholar]
  22. Jahromi B. S., Robitaille R., Charlton M. P. Transmitter release increases intracellular calcium in perisynaptic Schwann cells in situ. Neuron. 1992 Jun;8(6):1069–1077. doi: 10.1016/0896-6273(92)90128-z. [DOI] [PubMed] [Google Scholar]
  23. Lambert D. G., Nahorski S. R. Pertussis toxin inhibits alpha 2-adrenoceptor-mediated inhibition of adenylate cyclase without affecting muscarinic regulation of [Ca2+]i or inositol phosphate generation in SH-SY5Y human neuroblastoma cells. Biochem Pharmacol. 1990 Nov 15;40(10):2291–2295. doi: 10.1016/0006-2952(90)90725-z. [DOI] [PubMed] [Google Scholar]
  24. Lechleiter J., Girard S., Clapham D., Peralta E. Subcellular patterns of calcium release determined by G protein-specific residues of muscarinic receptors. Nature. 1991 Apr 11;350(6318):505–508. doi: 10.1038/350505a0. [DOI] [PubMed] [Google Scholar]
  25. Lee N. H., el-Fakahany E. E. Allosteric interactions at the m1, m2 and m3 muscarinic receptor subtypes. J Pharmacol Exp Ther. 1991 Feb;256(2):468–479. [PubMed] [Google Scholar]
  26. Liao C. F., Schilling W. P., Birnbaumer M., Birnbaumer L. Cellular responses to stimulation of the M5 muscarinic acetylcholine receptor as seen in murine L cells. J Biol Chem. 1990 Jul 5;265(19):11273–11284. [PubMed] [Google Scholar]
  27. Lindstrom J., Schoepfer R., Conroy W., Whiting P., Das M., Saedi M., Anand R. The nicotinic acetylcholine receptor gene family: structure of nicotinic receptors from muscle and neurons and neuronal alpha-bungarotoxin-binding proteins. Adv Exp Med Biol. 1991;287:255–278. doi: 10.1007/978-1-4684-5907-4_22. [DOI] [PubMed] [Google Scholar]
  28. Loring R. H., Schulz D. W., Zigmond R. E. Characterization of neuronal nicotinic receptors using neuronal bungarotoxin. Prog Brain Res. 1989;79:109–116. doi: 10.1016/s0079-6123(08)62470-x. [DOI] [PubMed] [Google Scholar]
  29. Mudrick-Donnon L. A., Williams P. J., Pittman Q. J., MacVicar B. A. Postsynaptic potentials mediated by GABA and dopamine evoked in stellate glial cells of the pituitary pars intermedia. J Neurosci. 1993 Nov;13(11):4660–4668. doi: 10.1523/JNEUROSCI.13-11-04660.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Murphy S., Pearce B., Morrow C. Astrocytes have both M1 and M2 muscarinic receptor subtypes. Brain Res. 1986 Jan 29;364(1):177–180. doi: 10.1016/0006-8993(86)91000-0. [DOI] [PubMed] [Google Scholar]
  31. Pearce B., Cambray-Deakin M., Morrow C., Grimble J., Murphy S. Activation of muscarinic and of alpha 1-adrenergic receptors on astrocytes results in the accumulation of inositol phosphates. J Neurochem. 1985 Nov;45(5):1534–1540. doi: 10.1111/j.1471-4159.1985.tb07224.x. [DOI] [PubMed] [Google Scholar]
  32. Pinset C., Mulle C., Benoit P., Changeux J. P., Chelly J., Gros F., Montarras D. Functional adult acetylcholine receptor develops independently of motor innervation in Sol 8 mouse muscle cell line. EMBO J. 1991 Sep;10(9):2411–2418. doi: 10.1002/j.1460-2075.1991.tb07780.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Reist N. E., Smith S. J. Neurally evoked calcium transients in terminal Schwann cells at the neuromuscular junction. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7625–7629. doi: 10.1073/pnas.89.16.7625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Robitaille R., Adler E. M., Charlton M. P. Calcium channels and calcium-gated potassium channels at the frog neuromuscular junction. J Physiol Paris. 1993;87(1):15–24. doi: 10.1016/0928-4257(93)90020-t. [DOI] [PubMed] [Google Scholar]
  35. Robitaille R., Adler E. M., Charlton M. P. Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses. Neuron. 1990 Dec;5(6):773–779. doi: 10.1016/0896-6273(90)90336-e. [DOI] [PubMed] [Google Scholar]
  36. Robitaille R., Bourque M. J., Vandaele S. Localization of L-type Ca2+ channels at perisynaptic glial cells of the frog neuromuscular junction. J Neurosci. 1996 Jan;16(1):148–158. doi: 10.1523/JNEUROSCI.16-01-00148.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Robitaille R. Purinergic receptors and their activation by endogenous purines at perisynaptic glial cells of the frog neuromuscular junction. J Neurosci. 1995 Nov;15(11):7121–7131. doi: 10.1523/JNEUROSCI.15-11-07121.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Savarese T. M., Wang C. D., Fraser C. M. Site-directed mutagenesis of the rat m1 muscarinic acetylcholine receptor. Role of conserved cysteines in receptor function. J Biol Chem. 1992 Jun 5;267(16):11439–11448. [PubMed] [Google Scholar]
  39. Silinsky E. M. On the mechanism by which adenosine receptor activation inhibits the release of acetylcholine from motor nerve endings. J Physiol. 1984 Jan;346:243–256. doi: 10.1113/jphysiol.1984.sp015019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Silinsky E. M., Solsona C., Hirsh J. K. Pertussis toxin prevents the inhibitory effect of adenosine and unmasks adenosine-induced excitation of mammalian motor nerve endings. Br J Pharmacol. 1989 May;97(1):16–18. doi: 10.1111/j.1476-5381.1989.tb11918.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Smith K. J., Schauf C. L. Effects of gallamine triethiodide on membrane currents in amphibian and mammalian peripheral nerve. J Pharmacol Exp Ther. 1981 Jun;217(3):719–726. [PubMed] [Google Scholar]
  42. Smith S. J. Do astrocytes process neural information? Prog Brain Res. 1992;94:119–136. doi: 10.1016/s0079-6123(08)61744-6. [DOI] [PubMed] [Google Scholar]
  43. Son Y. J., Thompson W. J. Nerve sprouting in muscle is induced and guided by processes extended by Schwann cells. Neuron. 1995 Jan;14(1):133–141. doi: 10.1016/0896-6273(95)90247-3. [DOI] [PubMed] [Google Scholar]
  44. Tucek S., Proska J. Allosteric modulation of muscarinic acetylcholine receptors. Trends Pharmacol Sci. 1995 Jun;16(6):205–212. doi: 10.1016/s0165-6147(00)89023-9. [DOI] [PubMed] [Google Scholar]
  45. Witzemann V., Brenner H. R., Sakmann B. Neural factors regulate AChR subunit mRNAs at rat neuromuscular synapses. J Cell Biol. 1991 Jul;114(1):125–141. doi: 10.1083/jcb.114.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES