Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Oct 1;504(Pt 1):113–126. doi: 10.1111/j.1469-7793.1997.113bf.x

Inhibition of spontaneous EPSCs and IPSCs by presynaptic GABAB receptors on rat supraoptic magnocellular neurons.

N Kabashima 1, I Shibuya 1, N Ibrahim 1, Y Ueta 1, H Yamashita 1
PMCID: PMC1159941  PMID: 9350623

Abstract

1. The function of presynaptic GABA receptors in the regulation of transmitter release in supraoptic nucleus (SON) magnocellular neurons was investigated by recording spontaneous postsynaptic currents from rat magnocellular SON neurons in a slice preparation (150 microns thick, 1.8 mm in diameter) using the whole-cell patch-clamp technique. 2. Both the spontaneous EPSCs and IPSCs were TTX resistant. The EPSCs were abolished by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), whereas the IPSCs were abolished by picrotoxin, suggesting that the EPSCs and IPSCs are synaptic inputs from glutamatergic and GABAergic neurons, respectively. 3. The selective GABAB agonist, baclofen, reduced the frequency of both the EPSCs and IPSCs without affecting the amplitude. The time constant of the decay phase of both the EPSCs and IPSCs remained unchanged after baclofen application. 4. The reduction of the frequency of the synaptic currents by baclofen was dose dependent (10 nM to 100 microM) and the EC50 values were 5.8 and 8.5 microM for the EPSCs and IPSCs, respectively. 5. The effect of baclofen (10 microM) was antagonized by the selective GABAB antagonist, 2-hydroxy-saclofen (2OH-saclofen), at 300 microM. 6. When given alone, 2OH-saclofen (100 microM) increased the frequency of both the EPSCs and IPSCs without affecting their amplitude, suggesting that endogenously released GABA in the slice acts on presynaptic GABAB receptors. 7. The GABAA agonist, muscimol, reduced the frequency of EPSCs, and picrotoxin increased the frequency of the EPSCs, suggesting that GABAA receptors also participate in the presynaptic inhibition of glutamate release. 8. Taken together, these data suggest that GABAB receptors are present on the presynaptic terminals of both GABA and glutamate neurons in the SON, and that these presynaptic GABAB receptors play an important role in the regulation of the neuronal activity in SON magnocellular neurons.

Full text

PDF
113

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonanno G., Raiteri M. Functional evidence for multiple gamma-aminobutyric acidB receptor subtypes in the rat cerebral cortex. J Pharmacol Exp Ther. 1992 Jul;262(1):114–118. [PubMed] [Google Scholar]
  2. Bonanno G., Raiteri M. Multiple GABAB receptors. Trends Pharmacol Sci. 1993 Jul;14(7):259–261. doi: 10.1016/0165-6147(93)90124-3. [DOI] [PubMed] [Google Scholar]
  3. Bormann J., Feigenspan A. GABAC receptors. Trends Neurosci. 1995 Dec;18(12):515–519. doi: 10.1016/0166-2236(95)98370-e. [DOI] [PubMed] [Google Scholar]
  4. Capogna M., Gähwiler B. H., Thompson S. M. Presynaptic inhibition of calcium-dependent and -independent release elicited with ionomycin, gadolinium, and alpha-latrotoxin in the hippocampus. J Neurophysiol. 1996 May;75(5):2017–2028. doi: 10.1152/jn.1996.75.5.2017. [DOI] [PubMed] [Google Scholar]
  5. Decavel C., Van den Pol A. N. GABA: a dominant neurotransmitter in the hypothalamus. J Comp Neurol. 1990 Dec 22;302(4):1019–1037. doi: 10.1002/cne.903020423. [DOI] [PubMed] [Google Scholar]
  6. Dittman J. S., Regehr W. G. Contributions of calcium-dependent and calcium-independent mechanisms to presynaptic inhibition at a cerebellar synapse. J Neurosci. 1996 Mar 1;16(5):1623–1633. doi: 10.1523/JNEUROSCI.16-05-01623.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doze V. A., Cohen G. A., Madison D. V. Calcium channel involvement in GABAB receptor-mediated inhibition of GABA release in area CA1 of the rat hippocampus. J Neurophysiol. 1995 Jul;74(1):43–53. doi: 10.1152/jn.1995.74.1.43. [DOI] [PubMed] [Google Scholar]
  8. Harrison N. L. On the presynaptic action of baclofen at inhibitory synapses between cultured rat hippocampal neurones. J Physiol. 1990 Mar;422:433–446. doi: 10.1113/jphysiol.1990.sp017993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holz G. G., 4th, Rane S. G., Dunlap K. GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature. 1986 Feb 20;319(6055):670–672. doi: 10.1038/319670a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Inenaga K., Cui L. N., Nagatomo T., Honda E., Ueta Y., Yamashita H. Osmotic modulation in glutamatergic excitatory synaptic inputs to neurons in the supraoptic nucleus of rat hypothalamus in vitro. J Neuroendocrinol. 1997 Jan;9(1):63–68. doi: 10.1046/j.1365-2826.1997.00597.x. [DOI] [PubMed] [Google Scholar]
  11. Jarolimek W., Misgeld U. On the inhibitory actions of baclofen and gamma-aminobutyric acid in rat ventral midbrain culture. J Physiol. 1992;451:419–443. doi: 10.1113/jphysiol.1992.sp019171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jhamandas J. H., Renaud L. P. Bicuculline blocks an inhibitory baroreflex input to supraoptic vasopressin neurons. Am J Physiol. 1987 May;252(5 Pt 2):R947–R952. doi: 10.1152/ajpregu.1987.252.5.R947. [DOI] [PubMed] [Google Scholar]
  13. Jiang Z. G., Allen C. N., North R. A. Presynaptic inhibition by baclofen of retinohypothalamic excitatory synaptic transmission in rat suprachiasmatic nucleus. Neuroscience. 1995 Feb;64(3):813–819. doi: 10.1016/0306-4522(94)00429-9. [DOI] [PubMed] [Google Scholar]
  14. Kannan H., Yamashita H., Koizumi K., Brooks C. M. Neuronal activity of the cat supraoptic nucleus is influenced by muscle small-diameter afferent (groups III and IV) receptors. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5744–5748. doi: 10.1073/pnas.85.15.5744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kasai M., Osaka T., Inenaga K., Kannan H., Yamashita H. gamma-Aminobutyric acid antagonist blocks baroreceptor-activated inhibition of neurosecretory cells in the hypothalamic paraventricular nucleus of rats. Neurosci Lett. 1987 Oct 29;81(3):319–324. doi: 10.1016/0304-3940(87)90403-4. [DOI] [PubMed] [Google Scholar]
  16. Koizumi K., Yamashita H. Influence of atrial stretch receptors on hypothalamic neurosecretory neurones. J Physiol. 1978 Dec;285:341–358. doi: 10.1113/jphysiol.1978.sp012575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kombian S. B., Zidichouski J. A., Pittman Q. J. GABAB receptors presynaptically modulate excitatory synaptic transmission in the rat supraoptic nucleus in vitro. J Neurophysiol. 1996 Aug;76(2):1166–1179. doi: 10.1152/jn.1996.76.2.1166. [DOI] [PubMed] [Google Scholar]
  18. Li Z., Inenaga K., Yamashita H. GABAergic inputs modulate effects of interleukin-1 beta on supraoptic neurones in vitro. Neuroreport. 1993 Nov 18;5(2):181–183. doi: 10.1097/00001756-199311180-00022. [DOI] [PubMed] [Google Scholar]
  19. Mason W. T., Poulain D., Cobbett P. gamma-Aminobutyric acid as an inhibitory neurotransmitter in the rat supraoptic nucleus: intracellular recordings in the hypothalamic slice. Neurosci Lett. 1987 Jan 27;73(3):259–265. doi: 10.1016/0304-3940(87)90255-2. [DOI] [PubMed] [Google Scholar]
  20. Meeker R. B., Swanson D. J., Greenwood R. S., Hayward J. N. Quantitative mapping of glutamate presynaptic terminals in the supraoptic nucleus and surrounding hypothalamus. Brain Res. 1993 Jan 8;600(1):112–122. doi: 10.1016/0006-8993(93)90408-f. [DOI] [PubMed] [Google Scholar]
  21. Meeker R. B., Swanson D. J., Hayward J. N. Light and electron microscopic localization of glutamate immunoreactivity in the supraoptic nucleus of the rat hypothalamus. Neuroscience. 1989;33(1):157–167. doi: 10.1016/0306-4522(89)90318-7. [DOI] [PubMed] [Google Scholar]
  22. Nagatomo T., Inenaga K., Yamashita H. Transient outward current in adult rat supraoptic neurones with slice patch-clamp technique: inhibition by angiotensin II. J Physiol. 1995 May 15;485(Pt 1):87–96. doi: 10.1113/jphysiol.1995.sp020714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Newberry N. R., Nicoll R. A. Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. 1984 Mar 29-Apr 4Nature. 308(5958):450–452. doi: 10.1038/308450a0. [DOI] [PubMed] [Google Scholar]
  24. Ogata N. gamma-Aminobutyric acid (GABA) causes consistent depolarization of neurons in the guinea pig supraoptic nucleus due to an absence of GABAB recognition sites. Brain Res. 1987 Feb 17;403(2):225–233. doi: 10.1016/0006-8993(87)90059-x. [DOI] [PubMed] [Google Scholar]
  25. Oliet S. H., Bourque C. W. Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature. 1993 Jul 22;364(6435):341–343. doi: 10.1038/364341a0. [DOI] [PubMed] [Google Scholar]
  26. Otis T. S., Staley K. J., Mody I. Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release. Brain Res. 1991 Apr 5;545(1-2):142–150. doi: 10.1016/0006-8993(91)91280-e. [DOI] [PubMed] [Google Scholar]
  27. Pfrieger F. W., Gottmann K., Lux H. D. Kinetics of GABAB receptor-mediated inhibition of calcium currents and excitatory synaptic transmission in hippocampal neurons in vitro. Neuron. 1994 Jan;12(1):97–107. doi: 10.1016/0896-6273(94)90155-4. [DOI] [PubMed] [Google Scholar]
  28. Randle J. C., Renaud L. P. Actions of gamma-aminobutyric acid on rat supraoptic nucleus neurosecretory neurones in vitro. J Physiol. 1987 Jun;387:629–647. doi: 10.1113/jphysiol.1987.sp016592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Robinson T. N., Cross A. J., Green A. R., Toczek J. M., Boar B. R. Effects of the putative antagonists phaclofen and delta-aminovaleric acid on GABAB receptor biochemistry. Br J Pharmacol. 1989 Nov;98(3):833–840. doi: 10.1111/j.1476-5381.1989.tb14612.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Scanziani M., Capogna M., Gähwiler B. H., Thompson S. M. Presynaptic inhibition of miniature excitatory synaptic currents by baclofen and adenosine in the hippocampus. Neuron. 1992 Nov;9(5):919–927. doi: 10.1016/0896-6273(92)90244-8. [DOI] [PubMed] [Google Scholar]
  31. Scholz K. P., Miller R. J. GABAB receptor-mediated inhibition of Ca2+ currents and synaptic transmission in cultured rat hippocampal neurones. J Physiol. 1991 Dec;444:669–686. doi: 10.1113/jphysiol.1991.sp018900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sieghart W. GABAA receptors: ligand-gated Cl- ion channels modulated by multiple drug-binding sites. Trends Pharmacol Sci. 1992 Dec;13(12):446–450. doi: 10.1016/0165-6147(92)90142-s. [DOI] [PubMed] [Google Scholar]
  33. Smith G. B., Olsen R. W. Functional domains of GABAA receptors. Trends Pharmacol Sci. 1995 May;16(5):162–168. doi: 10.1016/s0165-6147(00)89009-4. [DOI] [PubMed] [Google Scholar]
  34. Theodosis D. T., Paut L., Tappaz M. L. Immunocytochemical analysis of the GABAergic innervation of oxytocin- and vasopressin-secreting neurons in the rat supraoptic nucleus. Neuroscience. 1986 Sep;19(1):207–222. doi: 10.1016/0306-4522(86)90016-3. [DOI] [PubMed] [Google Scholar]
  35. Thompson S. M., Gähwiler B. H. Comparison of the actions of baclofen at pre- and postsynaptic receptors in the rat hippocampus in vitro. J Physiol. 1992;451:329–345. doi: 10.1113/jphysiol.1992.sp019167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vautrin J., Schaffner A. E., Barker J. L. Fast presynaptic GABAA receptor-mediated Cl- conductance in cultured rat hippocampal neurones. J Physiol. 1994 Aug 15;479(Pt 1):53–63. doi: 10.1113/jphysiol.1994.sp020277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Voisin D. L., Herbison A. E., Chapman C., Poulain D. A. Effects of central GABAB receptor modulation upon the milk ejection reflex in the rat. Neuroendocrinology. 1996 Apr;63(4):368–376. doi: 10.1159/000126977. [DOI] [PubMed] [Google Scholar]
  38. Wuarin J. P., Dudek F. E. Patch-clamp analysis of spontaneous synaptic currents in supraoptic neuroendocrine cells of the rat hypothalamus. J Neurosci. 1993 Jun;13(6):2323–2331. doi: 10.1523/JNEUROSCI.13-06-02323.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zhang S. J., Jackson M. B. Properties of the GABAA receptor of rat posterior pituitary nerve terminals. J Neurophysiol. 1995 Mar;73(3):1135–1144. doi: 10.1152/jn.1995.73.3.1135. [DOI] [PubMed] [Google Scholar]
  40. van den Pol A. N. Glutamate and aspartate immunoreactivity in hypothalamic presynaptic axons. J Neurosci. 1991 Jul;11(7):2087–2101. doi: 10.1523/JNEUROSCI.11-07-02087.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. van den Pol A. N., Hermans-Borgmeyer I., Hofer M., Ghosh P., Heinemann S. Ionotropic glutamate-receptor gene expression in hypothalamus: localization of AMPA, kainate, and NMDA receptor RNA with in situ hybridization. J Comp Neurol. 1994 May 15;343(3):428–444. doi: 10.1002/cne.903430307. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES