Abstract
1. Exposure to altitude hypoxia elicits changes in glucose homeostasis with increases in glucose and insulin concentrations within the first few days at altitude. Both increased and unchanged hepatic glucose production (HGP) have previously been reported in response to acute altitude hypoxia. Insulin action on glucose uptake has never been investigated during altitude hypoxia. 2. In eight healthy, sea level resident men (27 +/- 1 years (mean +/- S.E.M); weight, 72 +/- 2 kg; height, 182 +/- 2 cm) hyperinsulinaemic (50 mU min-1 m-2), euglycaemic clamps were carried out at sea level, and subsequently on days 2 and 7 after a rapid passive ascent to an altitude of 4559 m. 3. Acute mountain sickness scores increased in the first days of altitude exposure, with a peak on day 2. Basal HGP did not change with the transition from sea level (2.2 +/- 0.2 mg min-1 kg-1) to altitude (2.0 +/- 0.1 and 2.1 +/- 0.2 mg min-1 kg-1, days 2 and 7, respectively). Insulin-stimulated glucose uptake rate was halved on day two compared with sea level (4.5 +/- 0.6 and 9.8 +/- 1.1 mg min-1 kg-1, respectively; P < 0.05), and was partly restored on day 7 (7.4 +/- 1.4 mg min-1 kg-1; P < 0.05 vs. day two and sea level). Concentrations of glucagon and growth hormone remained unchanged, whereas glucose, C-peptide and cortisol increased on day 2. Noradrenaline concentrations increased during the stay at altitude, while adrenaline concentrations remained unchanged. In response to insulin infusion, catecholamines increased on day 2 (noradrenaline and adrenaline) and day 7 (adrenaline), but not at sea level. 4. In conclusion, insulin action decreases markedly in response to two days of altitude hypoxia, but improves with more prolonged exposure. HGP is always unchanged. The changes in insulin action may in part be explained by the changes in counter-regulatory hormones.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Azevedo J. L., Jr, Carey J. O., Pories W. J., Morris P. G., Dohm G. L. Hypoxia stimulates glucose transport in insulin-resistant human skeletal muscle. Diabetes. 1995 Jun;44(6):695–698. doi: 10.2337/diab.44.6.695. [DOI] [PubMed] [Google Scholar]
- Brooks G. A., Butterfield G. E., Wolfe R. R., Groves B. M., Mazzeo R. S., Sutton J. R., Wolfel E. E., Reeves J. T. Increased dependence on blood glucose after acclimatization to 4,300 m. J Appl Physiol (1985) 1991 Feb;70(2):919–927. doi: 10.1152/jappl.1991.70.2.919. [DOI] [PubMed] [Google Scholar]
- Cartee G. D., Douen A. G., Ramlal T., Klip A., Holloszy J. O. Stimulation of glucose transport in skeletal muscle by hypoxia. J Appl Physiol (1985) 1991 Apr;70(4):1593–1600. doi: 10.1152/jappl.1991.70.4.1593. [DOI] [PubMed] [Google Scholar]
- Cooper D. M., Wasserman D. H., Vranic M., Wasserman K. Glucose turnover in response to exercise during high- and low-FIO2 breathing in man. Am J Physiol. 1986 Aug;251(2 Pt 1):E209–E214. doi: 10.1152/ajpendo.1986.251.2.E209. [DOI] [PubMed] [Google Scholar]
- DeFronzo R. A., Bonadonna R. C., Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care. 1992 Mar;15(3):318–368. doi: 10.2337/diacare.15.3.318. [DOI] [PubMed] [Google Scholar]
- Dela F., Mikines K. J., Tronier B., Galbo H. Diminished arginine-stimulated insulin secretion in trained men. J Appl Physiol (1985) 1990 Jul;69(1):261–267. doi: 10.1152/jappl.1990.69.1.261. [DOI] [PubMed] [Google Scholar]
- Fushiki T., Kano T., Ito K., Hirofuji C., Inoue K., Moritani T., Sugimoto E. Effects of chronic hypoxia on the whole-body insulin action in rats. Can J Physiol Pharmacol. 1992 Nov;70(11):1522–1524. doi: 10.1139/y92-217. [DOI] [PubMed] [Google Scholar]
- Holmäng A., Björntorp P. The effects of cortisol on insulin sensitivity in muscle. Acta Physiol Scand. 1992 Apr;144(4):425–431. doi: 10.1111/j.1748-1716.1992.tb09316.x. [DOI] [PubMed] [Google Scholar]
- Laakso M., Edelman S. V., Brechtel G., Baron A. D. Effects of epinephrine on insulin-mediated glucose uptake in whole body and leg muscle in humans: role of blood flow. Am J Physiol. 1992 Aug;263(2 Pt 1):E199–E204. doi: 10.1152/ajpendo.1992.263.2.E199. [DOI] [PubMed] [Google Scholar]
- Lager I., Attvall S., Eriksson B. M., von Schenk H., Smith U. Studies on the insulin-antagonistic effect of catecholamines in normal man. Evidence for the importance of beta 2-receptors. Diabetologia. 1986 Jul;29(7):409–416. doi: 10.1007/BF00506530. [DOI] [PubMed] [Google Scholar]
- Linsell C. R., Lightman S. L., Mullen P. E., Brown M. J., Causon R. C. Circadian rhythms of epinephrine and norepinephrine in man. J Clin Endocrinol Metab. 1985 Jun;60(6):1210–1215. doi: 10.1210/jcem-60-6-1210. [DOI] [PubMed] [Google Scholar]
- Lupien J. R., Hirshman M. F., Horton E. S. Effects of norepinephrine infusion on in vivo insulin sensitivity and responsiveness. Am J Physiol. 1990 Aug;259(2 Pt 1):E210–E215. doi: 10.1152/ajpendo.1990.259.2.E210. [DOI] [PubMed] [Google Scholar]
- Marangou A. G., Alford F. P., Ward G., Liskaser F., Aitken P. M., Weber K. M., Boston R. C., Best J. D. Hormonal effects of norepinephrine on acute glucose disposal in humans: a minimal model analysis. Metabolism. 1988 Sep;37(9):885–891. doi: 10.1016/0026-0495(88)90124-2. [DOI] [PubMed] [Google Scholar]
- Møller N., Butler P. C., Antsiferov M. A., Alberti K. G. Effects of growth hormone on insulin sensitivity and forearm metabolism in normal man. Diabetologia. 1989 Feb;32(2):105–110. doi: 10.1007/BF00505182. [DOI] [PubMed] [Google Scholar]
- Ribel U., Hougaard P., Drejer K., Sørensen A. R. Equivalent in vivo biological activity of insulin analogues and human insulin despite different in vitro potencies. Diabetes. 1990 Sep;39(9):1033–1039. doi: 10.2337/diab.39.9.1033. [DOI] [PubMed] [Google Scholar]
- Richalet J. P., Rutgers V., Bouchet P., Rymer J. C., Kéromès A., Duval-Arnould G., Rathat C. Diurnal variations of acute mountain sickness, colour vision, and plasma cortisol and ACTH at high altitude. Aviat Space Environ Med. 1989 Feb;60(2):105–111. [PubMed] [Google Scholar]
- Rizza R. A., Mandarino L. J., Gerich J. E. Effects of growth hormone on insulin action in man. Mechanisms of insulin resistance, impaired suppression of glucose production, and impaired stimulation of glucose utilization. Diabetes. 1982 Aug;31(8 Pt 1):663–669. doi: 10.2337/diab.31.8.663. [DOI] [PubMed] [Google Scholar]
- Roberts A. C., Reeves J. T., Butterfield G. E., Mazzeo R. S., Sutton J. R., Wolfel E. E., Brooks G. A. Altitude and beta-blockade augment glucose utilization during submaximal exercise. J Appl Physiol (1985) 1996 Feb;80(2):605–615. doi: 10.1152/jappl.1996.80.2.605. [DOI] [PubMed] [Google Scholar]
- Rooney D. P., Neely R. D., Cullen C., Ennis C. N., Sheridan B., Atkinson A. B., Trimble E. R., Bell P. M. The effect of cortisol on glucose/glucose-6-phosphate cycle activity and insulin action. J Clin Endocrinol Metab. 1993 Nov;77(5):1180–1183. doi: 10.1210/jcem.77.5.8077310. [DOI] [PubMed] [Google Scholar]
- STEELE R., WALL J. S., DE BODO R. C., ALTSZULER N. Measurement of size and turnover rate of body glucose pool by the isotope dilution method. Am J Physiol. 1956 Sep;187(1):15–24. doi: 10.1152/ajplegacy.1956.187.1.15. [DOI] [PubMed] [Google Scholar]
- Sawhney R. C., Malhotra A. S., Singh T. Glucoregulatory hormones in man at high altitude. Eur J Appl Physiol Occup Physiol. 1991;62(4):286–291. doi: 10.1007/BF00571554. [DOI] [PubMed] [Google Scholar]
- Sutton J. R., Viol G. W., Gray G. W., McFadden M., Keane P. M. Renin, aldosterone, electrolyte, and cortisol responses to hypoxic decompression. J Appl Physiol Respir Environ Exerc Physiol. 1977 Sep;43(3):421–424. doi: 10.1152/jappl.1977.43.3.421. [DOI] [PubMed] [Google Scholar]
- Young P. M., Sutton J. R., Green H. J., Reeves J. T., Rock P. B., Houston C. S., Cymerman A. Operation Everest II: metabolic and hormonal responses to incremental exercise to exhaustion. J Appl Physiol (1985) 1992 Dec;73(6):2574–2579. doi: 10.1152/jappl.1992.73.6.2574. [DOI] [PubMed] [Google Scholar]
