Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Nov 1;504(Pt 3):611–627. doi: 10.1111/j.1469-7793.1997.611bd.x

Interchangeable discharge patterns of neurons in caudal nucleus tractus solitarii in rat slices: role of GABA and NMDA.

J C Yen 1, S H Chan 1
PMCID: PMC1159965  PMID: 9401969

Abstract

1. We characterized in rat brain slices the discharge patterns of spontaneously active neurons in the caudal region of the nucleus tractus solitarii (cNTS) and the neuromodulatory role of GABA and glutamate, via GABAA and NMDA receptors. 2. Spontaneous action potentials recorded intracellularly from cNTS neurons manifested either a regular or an irregular discharge pattern, alongside characteristic waveforms of the action potentials. These discharge patterns were interchangeable, and were highly sensitive to fluctuations in membrane potentials. In addition, the repolarizing rate of the after-hyperpolarization (AHP) in cNTS neurons that exhibited a regular discharge pattern was significantly higher than that of neurons that displayed irregular discharges. 3. cNTS neurons that manifested a regular discharge pattern were converted to irregular discharges upon superfusion with GABA (200 microM). This was accompanied by a reduction in the repolarizing rate of the AHP of both spontaneous and evoked action potentials. Conversion of discharge patterns in the opposite direction was elicited by superfusion with NMDA (6.8 microM). 4. The irregular discharges of spontaneous or evoked cNTS neurons were converted to a regular discharge pattern by bicuculline (200 microM). Subsequent application of D(-)-2-amino-5-phosphonopentanoic acid (250 microM) essentially led the neuronal discharges to revert to an irregular pattern. 5. Our results support the presence of two interchangeable modes of electrophysiological manifestations from the same cNTS neuronal population. They also showed that GABA and glutamate, via GABAA and NMDA receptors, may provide a novel form of neuromodulation at the cNTS by switching the patterns of neuronal discharges.

Full text

PDF
611

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett J. A., McWilliam P. N., Shepheard S. L. A gamma-aminobutyric-acid-mediated inhibition of neurones in the nucleus tractus solitarius of the cat. J Physiol. 1987 Nov;392:417–430. doi: 10.1113/jphysiol.1987.sp016788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brooks P. A., Glaum S. R., Miller R. J., Spyer K. M. The actions of baclofen on neurones and synaptic transmission in the nucleus tractus solitarii of the rat in vitro. J Physiol. 1992 Nov;457:115–129. doi: 10.1113/jphysiol.1992.sp019367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cai Y., Hay M., Bishop V. S. Stimulation of area postrema by vasopressin and angiotensin II modulates neuronal activity in the nucleus tractus solitarius. Brain Res. 1994 Jun 6;647(2):242–248. doi: 10.1016/0006-8993(94)91323-4. [DOI] [PubMed] [Google Scholar]
  4. Catelli J. M., Giakas W. J., Sved A. F. GABAergic mechanisms in nucleus tractus solitarius alter blood pressure and vasopressin release. Brain Res. 1987 Feb 17;403(2):279–289. doi: 10.1016/0006-8993(87)90065-5. [DOI] [PubMed] [Google Scholar]
  5. Champagnat J., Denavit-Saubie M., Siggins G. R. Rhythmic neuronal activities in the nucleus of the tractus solitarius isolated in vitro. Brain Res. 1983 Nov 28;280(1):155–159. doi: 10.1016/0006-8993(83)91184-8. [DOI] [PubMed] [Google Scholar]
  6. Champagnat J., Denavit-Saubié M., Grant K., Shen K. F. Organization of synaptic transmission in the mammalian solitary complex, studied in vitro. J Physiol. 1986 Dec;381:551–573. doi: 10.1113/jphysiol.1986.sp016343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Champagnat J., Siggins G. R., Koda L. Y., Denavit-Saubié M. Synaptic responses of neurons of the nucleus tractus solitarius in vitro. Brain Res. 1985 Jan 28;325(1-2):49–56. doi: 10.1016/0006-8993(85)90301-4. [DOI] [PubMed] [Google Scholar]
  8. Ciriello J. Brainstem projections of aortic baroreceptor afferent fibers in the rat. Neurosci Lett. 1983 Mar 28;36(1):37–42. doi: 10.1016/0304-3940(83)90482-2. [DOI] [PubMed] [Google Scholar]
  9. Cohen M. I. Neurogenesis of respiratory rhythm in the mammal. Physiol Rev. 1979 Oct;59(4):1105–1173. doi: 10.1152/physrev.1979.59.4.1105. [DOI] [PubMed] [Google Scholar]
  10. Dekin M. S., Getting P. A., Johnson S. M. In vitro characterization of neurons in the ventral part of the nucleus tractus solitarius. I. Identification of neuronal types and repetitive firing properties. J Neurophysiol. 1987 Jul;58(1):195–214. doi: 10.1152/jn.1987.58.1.195. [DOI] [PubMed] [Google Scholar]
  11. Dingledine R., Hynes M. A., King G. L. Involvement of N-methyl-D-aspartate receptors in epileptiform bursting in the rat hippocampal slice. J Physiol. 1986 Nov;380:175–189. doi: 10.1113/jphysiol.1986.sp016279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Feldman P. D., Felder R. B. Alpha 2-adrenergic modulation of synaptic excitability in the rat nucleus tractus solitarius. Brain Res. 1989 Feb 20;480(1-2):190–197. doi: 10.1016/0006-8993(89)91582-5. [DOI] [PubMed] [Google Scholar]
  13. Feldman P. D., Felder R. B. Effects of gamma-aminobutyric acid and glycine on synaptic excitability of neurones in the solitary tract nucleus. Neuropharmacology. 1991 Mar;30(3):225–236. doi: 10.1016/0028-3908(91)90149-6. [DOI] [PubMed] [Google Scholar]
  14. Fortin G., Champagnat J. Spontaneous synaptic activities in rat nucleus tractus solitarius neurons in vitro: evidence for re-excitatory processing. Brain Res. 1993 Dec 10;630(1-2):125–135. doi: 10.1016/0006-8993(93)90650-c. [DOI] [PubMed] [Google Scholar]
  15. Grace A. A., Onn S. P. Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci. 1989 Oct;9(10):3463–3481. doi: 10.1523/JNEUROSCI.09-10-03463.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Griffith W. H., Sim J. A., Matthews R. T. Electrophysiologic characteristics of basal forebrain neurons in vitro. Adv Exp Med Biol. 1991;295:143–155. doi: 10.1007/978-1-4757-0145-6_6. [DOI] [PubMed] [Google Scholar]
  17. Hay M., Bishop V. S. Interactions of area postrema and solitary tract in the nucleus tractus solitarius. Am J Physiol. 1991 May;260(5 Pt 2):H1466–H1473. doi: 10.1152/ajpheart.1991.260.5.H1466. [DOI] [PubMed] [Google Scholar]
  18. Izzo P. N., Sykes R. M., Spyer K. M. gamma-Aminobutyric acid immunoreactive structures in the nucleus tractus solitarius: a light and electron microscopic study. Brain Res. 1992 Sep 18;591(1):69–78. doi: 10.1016/0006-8993(92)90979-j. [DOI] [PubMed] [Google Scholar]
  19. Jahnsen H., Llinás R. Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol. 1984 Apr;349:205–226. doi: 10.1113/jphysiol.1984.sp015153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kanter E. D., Kapur A., Haberly L. B. A dendritic GABAA-mediated IPSP regulates facilitation of NMDA-mediated responses to burst stimulation of afferent fibers in piriform cortex. J Neurosci. 1996 Jan;16(1):307–312. doi: 10.1523/JNEUROSCI.16-01-00307.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kubo T., Kihara M. Evidence for gamma-aminobutyric acid receptor-mediated modulation of the aortic baroreceptor reflex in the nucleus tractus solitarii of the rat. Neurosci Lett. 1988 Jun 29;89(2):156–160. doi: 10.1016/0304-3940(88)90373-4. [DOI] [PubMed] [Google Scholar]
  22. Kubo T., Kihara M. Evidence for the presence of GABAergic and glycine-like systems responsible for cardiovascular control in the nucleus tractus solitarii of the rat. Neurosci Lett. 1987 Mar 9;74(3):331–336. doi: 10.1016/0304-3940(87)90319-3. [DOI] [PubMed] [Google Scholar]
  23. Kubo T., Kihara M. Evidence of N-methyl-D-aspartate receptor-mediated modulation of the aortic baroreceptor reflex in the rat nucleus tractus solitarii. Neurosci Lett. 1988 Apr 22;87(1-2):69–74. doi: 10.1016/0304-3940(88)90147-4. [DOI] [PubMed] [Google Scholar]
  24. Kuo T. B., Chan S. H. Extraction, discrimination and analysis of single-neuron signals by a personal-computer-based algorithm. Biol Signals. 1992 Sep-Oct;1(5):282–292. doi: 10.1159/000109333. [DOI] [PubMed] [Google Scholar]
  25. Kuo T. B., Shyr M. H., Chan S. H. Simultaneous, continuous, on-line and real-time spectral analysis of multiple physiologic signals by a personal-computer-based algorithm. Biol Signals. 1993 Jan-Feb;2(1):45–56. doi: 10.1159/000109477. [DOI] [PubMed] [Google Scholar]
  26. Lawrence A. J., Jarrott B. Neurochemical modulation of cardiovascular control in the nucleus tractus solitarius. Prog Neurobiol. 1996 Jan;48(1):21–53. doi: 10.1016/0301-0082(95)00034-8. [DOI] [PubMed] [Google Scholar]
  27. Luhmann H. J., Prince D. A. Control of NMDA receptor-mediated activity by GABAergic mechanisms in mature and developing rat neocortex. Brain Res Dev Brain Res. 1990 Jul 1;54(2):287–290. doi: 10.1016/0165-3806(90)90152-o. [DOI] [PubMed] [Google Scholar]
  28. McWilliam P. N., Shepheard S. L. A GABA-mediated inhibition of neurones in the nucleus tractus solitarius of the cat that respond to electrical stimulation of the carotid sinus nerve. Neurosci Lett. 1988 Dec 5;94(3):321–326. doi: 10.1016/0304-3940(88)90038-9. [DOI] [PubMed] [Google Scholar]
  29. Miles R. Frequency dependence of synaptic transmission in nucleus of the solitary tract in vitro. J Neurophysiol. 1986 May;55(5):1076–1090. doi: 10.1152/jn.1986.55.5.1076. [DOI] [PubMed] [Google Scholar]
  30. Paton J. F., Foster W. R., Schwaber J. S. Characteristic firing behavior of cell types in the cardiorespiratory region of the nucleus tractus solitarii of the rat. Brain Res. 1993 Feb 26;604(1-2):112–125. doi: 10.1016/0006-8993(93)90358-t. [DOI] [PubMed] [Google Scholar]
  31. Paton J. F., Rogers W. T., Schwaber J. S. The ventrolateral medulla as a source of synaptic drive to rhythmically firing neurons in the cardiovascular nucleus tractus solitarius of the rat. Brain Res. 1991 Oct 11;561(2):217–229. doi: 10.1016/0006-8993(91)91598-u. [DOI] [PubMed] [Google Scholar]
  32. Paton J. F., Rogers W. T., Schwaber J. S. Tonically rhythmic neurons within a cardiorespiratory region of the nucleus tractus solitarii of the rat. J Neurophysiol. 1991 Sep;66(3):824–838. doi: 10.1152/jn.1991.66.3.824. [DOI] [PubMed] [Google Scholar]
  33. Sernagor E., Chub N., Ritter A., O'Donovan M. J. Pharmacological characterization of the rhythmic synaptic drive onto lumbosacral motoneurons in the chick embryo spinal cord. J Neurosci. 1995 Nov;15(11):7452–7464. doi: 10.1523/JNEUROSCI.15-11-07452.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Spyer K. M. Annual review prize lecture. Central nervous mechanisms contributing to cardiovascular control. J Physiol. 1994 Jan 1;474(1):1–19. doi: 10.1113/jphysiol.1994.sp019997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Spyer K. M. Neural organisation and control of the baroreceptor reflex. Rev Physiol Biochem Pharmacol. 1981;88:24–124. [PubMed] [Google Scholar]
  36. Storm J. F. Potassium currents in hippocampal pyramidal cells. Prog Brain Res. 1990;83:161–187. doi: 10.1016/s0079-6123(08)61248-0. [DOI] [PubMed] [Google Scholar]
  37. Tell F., Jean A. Bursting discharges evoked in vitro, by solitary tract stimulation or application of N-methyl-D-aspartate, in neurons of the rat nucleus tractus solitarii. Neurosci Lett. 1991 Apr 1;124(2):221–224. doi: 10.1016/0304-3940(91)90098-e. [DOI] [PubMed] [Google Scholar]
  38. Tell F., Jean A. Ionic basis for endogenous rhythmic patterns induced by activation of N-methyl-D-aspartate receptors in neurons of the rat nucleus tractus solitarii. J Neurophysiol. 1993 Dec;70(6):2379–2390. doi: 10.1152/jn.1993.70.6.2379. [DOI] [PubMed] [Google Scholar]
  39. Yang C. C., Kuo T. B., Chan S. H. Functional characterization of caudal hypoglossal neurons by spectral patterns of neuronal discharges in the rat. Neuroscience. 1997 Apr;77(3):813–827. doi: 10.1016/s0306-4522(96)00515-5. [DOI] [PubMed] [Google Scholar]
  40. Yen J. C., Chan S. H. Passive biophysical membrane properties of nucleus reticularis gigantocellularis neurons in brain slices from the rat. Neurosci Lett. 1993 Sep 3;159(1-2):5–8. doi: 10.1016/0304-3940(93)90784-i. [DOI] [PubMed] [Google Scholar]
  41. el Manira A., Tegnér J., Grillner S. Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey. J Neurophysiol. 1994 Oct;72(4):1852–1861. doi: 10.1152/jn.1994.72.4.1852. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES