Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Nov 1;504(Pt 3):649–663. doi: 10.1111/j.1469-7793.1997.649bd.x

Characterization of the inward current induced by metabotropic glutamate receptor stimulation in rat ventromedial hypothalamic neurones.

K Lee 1, P R Boden 1
PMCID: PMC1159968  PMID: 9401972

Abstract

1. Whole-cell patch clamp recordings were made from rat ventromedial hypothalamic neurones in slices of brain tissue in vitro. Bath application of 50 microM (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) depolarized all neurones tested by activation of an inward current of approximately 55 pA at -60 mV. 2. The inward current elicited by 1S,3R-ACPD was unaffected by K+ channel blockade with external Cs+, Ba2+ or TEA. However, the current was significantly reduced by replacement of the external NaCl with either Tris-HCl or LiCl. 3. The 1S,3R-ACPD-induced current was reduced by the heavy metal ions Ni2+ or La3+ and also by the Na(+)-Ca2+ exchange current inhibitor 3',4'-dichlorobenzamil. 4. The effects of 1S,3R-ACPD were mimicked by the group I metabotropic agonist 3,5-dihydroxyphenylglycine (DHPG) but not by the group III selective agonist, L-2-amino-4-phosphonobutanoate (L-AP4). Furthermore, the effects of 1S,3R-ACPD were inhibited by the metabotropic antagonists alpha-methyl-4-carboxyphenylglycine (MCPG) and 1-aminoindan-1,5-dicarboxylic acid (AIDA) but not by the presynaptic metabotropic receptor antagonists alpha-methyl-4-phosphonophenylglycine (MPPG) or alpha-methyl-4-tetrazolylphenylglycine (MTPG). 5. Photorelease of caged GDP beta S inside neurones irreversibly blocked the 1S,3R-ACPD-induced current whilst photolysis of caged GTP gamma S inside neurones irreversibly potentiated this current. 6. The PLC inhibitor U-73,122 significantly reduced the size of the inward current induced by 1S,3R-ACPD. This effect was not mimicked by the inactive analogue U-73,343. 7. Flash photolysis of the caged calcium chelator diazo-2 inside neurones diminished the response to 1S,3R-ACPD. 8. It is concluded that group I metabotropic glutamate receptors depolarize neurones in the VMH by activation of a Na(+)-Ca2+ exchange current through a G-protein coupled increase in intracellular Ca2+.

Full text

PDF
649

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANAND B. K., CHHINA G. S., SHARMA K. N., DUA S., SINGH B. ACTIVITY OF SINGLE NEURONS IN THE HYPOTHALAMIC FEEDING CENTERS: EFFECT OF GLUCOSE. Am J Physiol. 1964 Nov;207:1146–1154. doi: 10.1152/ajplegacy.1964.207.5.1146. [DOI] [PubMed] [Google Scholar]
  2. Ballard C., Schaffer S. Stimulation of the Na+/Ca2+ exchanger by phenylephrine, angiotensin II and endothelin 1. J Mol Cell Cardiol. 1996 Jan;28(1):11–17. doi: 10.1006/jmcc.1996.0002. [DOI] [PubMed] [Google Scholar]
  3. Bleasdale J. E., Thakur N. R., Gremban R. S., Bundy G. L., Fitzpatrick F. A., Smith R. J., Bunting S. Selective inhibition of receptor-coupled phospholipase C-dependent processes in human platelets and polymorphonuclear neutrophils. J Pharmacol Exp Ther. 1990 Nov;255(2):756–768. [PubMed] [Google Scholar]
  4. Boden P., Hill R. G. Effects of cholecystokinin and related peptides on neuronal activity in the ventromedial nucleus of the rat hypothalamus. Br J Pharmacol. 1988 May;94(1):246–252. doi: 10.1111/j.1476-5381.1988.tb11521.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brann D. W., Mahesh V. B. Excitatory amino acids: function and significance in reproduction and neuroendocrine regulation. Front Neuroendocrinol. 1994 Mar;15(1):3–49. doi: 10.1006/frne.1994.1002. [DOI] [PubMed] [Google Scholar]
  6. Duvoisin R. M., Zhang C., Ramonell K. A novel metabotropic glutamate receptor expressed in the retina and olfactory bulb. J Neurosci. 1995 Apr;15(4):3075–3083. doi: 10.1523/JNEUROSCI.15-04-03075.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eisner D. A., Lederer W. J. Na-Ca exchange: stoichiometry and electrogenicity. Am J Physiol. 1985 Mar;248(3 Pt 1):C189–C202. doi: 10.1152/ajpcell.1985.248.3.C189. [DOI] [PubMed] [Google Scholar]
  8. Fan J., Shuba Y. M., Morad M. Regulation of cardiac sodium-calcium exchanger by beta-adrenergic agonists. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5527–5532. doi: 10.1073/pnas.93.11.5527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guérineau N. C., Bossu J. L., Gähwiler B. H., Gerber U. Activation of a nonselective cationic conductance by metabotropic glutamatergic and muscarinic agonists in CA3 pyramidal neurons of the rat hippocampus. J Neurosci. 1995 Jun;15(6):4395–4407. doi: 10.1523/JNEUROSCI.15-06-04395.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guérineau N. C., Gähwiler B. H., Gerber U. Reduction of resting K+ current by metabotropic glutamate and muscarinic receptors in rat CA3 cells: mediation by G-proteins. J Physiol. 1994 Jan 1;474(1):27–33. doi: 10.1113/jphysiol.1994.sp019999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Iwamoto T., Wakabayashi S., Shigekawa M. Growth factor-induced phosphorylation and activation of aortic smooth muscle Na+/Ca2+ exchanger. J Biol Chem. 1995 Apr 14;270(15):8996–9001. doi: 10.1074/jbc.270.15.8996. [DOI] [PubMed] [Google Scholar]
  12. Jane D. E., Pittaway K., Sunter D. C., Thomas N. K., Watkins J. C. New phenylglycine derivatives with potent and selective antagonist activity at presynaptic glutamate receptors in neonatal rat spinal cord. Neuropharmacology. 1995 Aug;34(8):851–856. doi: 10.1016/0028-3908(95)00063-c. [DOI] [PubMed] [Google Scholar]
  13. Kawabata S., Tsutsumi R., Kohara A., Yamaguchi T., Nakanishi S., Okada M. Control of calcium oscillations by phosphorylation of metabotropic glutamate receptors. Nature. 1996 Sep 5;383(6595):89–92. doi: 10.1038/383089a0. [DOI] [PubMed] [Google Scholar]
  14. Keele N. B., Arvanov V. L., Shinnick-Gallagher P. Quisqualate-preferring metabotropic glutamate receptor activates Na(+)-Ca2+ exchange in rat basolateral amygdala neurones. J Physiol. 1997 Feb 15;499(Pt 1):87–104. doi: 10.1113/jphysiol.1997.sp021913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kimura J., Miyamae S., Noma A. Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig. J Physiol. 1987 Mar;384:199–222. doi: 10.1113/jphysiol.1987.sp016450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kleyman T. R., Cragoe E. J., Jr Amiloride and its analogs as tools in the study of ion transport. J Membr Biol. 1988 Oct;105(1):1–21. doi: 10.1007/BF01871102. [DOI] [PubMed] [Google Scholar]
  17. Lipp P., Pott L. Voltage dependence of sodium-calcium exchange current in guinea-pig atrial myocytes determined by means of an inhibitor. J Physiol. 1988 Sep;403:355–366. doi: 10.1113/jphysiol.1988.sp017253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McBain C. J., DiChiara T. J., Kauer J. A. Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission. J Neurosci. 1994 Jul;14(7):4433–4445. doi: 10.1523/JNEUROSCI.14-07-04433.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Meeker R. B., Greenwood R. S., Hayward J. N. Glutamate receptors in the rat hypothalamus and pituitary. Endocrinology. 1994 Feb;134(2):621–629. doi: 10.1210/endo.134.2.7905409. [DOI] [PubMed] [Google Scholar]
  20. NAKAO H. Emotional behavior produced by hypothalamic stimulation. Am J Physiol. 1958 Aug;194(2):411–418. doi: 10.1152/ajplegacy.1958.194.2.411. [DOI] [PubMed] [Google Scholar]
  21. Partridge L. D., Swandulla D. Calcium-activated non-specific cation channels. Trends Neurosci. 1988 Feb;11(2):69–72. doi: 10.1016/0166-2236(88)90167-1. [DOI] [PubMed] [Google Scholar]
  22. Pellicciari R., Luneia R., Costantino G., Marinozzi M., Natalini B., Jakobsen P., Kanstrup A., Lombardi G., Moroni F., Thomsen C. 1-Aminoindan-1,5-dicarboxylic acid: a novel antagonist at phospholipase C-linked metabotropic glutamate receptors. J Med Chem. 1995 Sep 15;38(19):3717–3719. doi: 10.1021/jm00019a002. [DOI] [PubMed] [Google Scholar]
  23. Pfaff D. W., Sakuma Y. Facilitation of the lordosis reflex of female rats from the ventromedial nucleus of the hypothalamus. J Physiol. 1979 Mar;288:189–202. [PMC free article] [PubMed] [Google Scholar]
  24. Priestley T. The effect of baclofen and somatostatin on neuronal activity in the rat ventromedial hypothalamic nucleus in vitro. Neuropharmacology. 1992 Feb;31(2):103–109. doi: 10.1016/0028-3908(92)90018-k. [DOI] [PubMed] [Google Scholar]
  25. Renaud L. P. Influence of medial preoptic-anterior hypothalamic area stimulation of the excitability of mediobasal hypothalamic neurones in the rat. J Physiol. 1977 Jan;264(2):541–564. doi: 10.1113/jphysiol.1977.sp011682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schoepp D. D., Conn P. J. Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol Sci. 1993 Jan;14(1):13–20. doi: 10.1016/0165-6147(93)90107-u. [DOI] [PubMed] [Google Scholar]
  27. Schoepp D. D., Goldsworthy J., Johnson B. G., Salhoff C. R., Baker S. R. 3,5-dihydroxyphenylglycine is a highly selective agonist for phosphoinositide-linked metabotropic glutamate receptors in the rat hippocampus. J Neurochem. 1994 Aug;63(2):769–772. doi: 10.1046/j.1471-4159.1994.63020769.x. [DOI] [PubMed] [Google Scholar]
  28. Smith L., Smith J. B. Regulation of sodium-calcium exchanger by glucocorticoids and growth factors in vascular smooth muscle. J Biol Chem. 1994 Nov 4;269(44):27527–27531. [PubMed] [Google Scholar]
  29. Staub C., Vranesic I., Knöpfel T. Responses to Metabotropic Glutamate Receptor Activation in Cerebellar Purkinje Cells: Induction of an Inward Current. Eur J Neurosci. 1992;4(9):832–839. doi: 10.1111/j.1460-9568.1992.tb00193.x. [DOI] [PubMed] [Google Scholar]
  30. Stuart G. J., Dodt H. U., Sakmann B. Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch. 1993 Jun;423(5-6):511–518. doi: 10.1007/BF00374949. [DOI] [PubMed] [Google Scholar]
  31. Taglialatela M., Canzoniero L. M., Cragoe E. J., Jr, Di Renzo G., Annunziato L. Na(+)-Ca2+ exchange activity in central nerve endings. II. Relationship between pharmacological blockade by amiloride analogues and dopamine release from tuberoinfundibular hypothalamic neurons. Mol Pharmacol. 1990 Sep;38(3):393–400. [PubMed] [Google Scholar]
  32. Van den Pol A. N. Metabotropic glutamate receptor mGluR1 distribution and ultrastructural localization in hypothalamus. J Comp Neurol. 1994 Nov 22;349(4):615–632. doi: 10.1002/cne.903490409. [DOI] [PubMed] [Google Scholar]
  33. Watkins J., Collingridge G. Phenylglycine derivatives as antagonists of metabotropic glutamate receptors. Trends Pharmacol Sci. 1994 Sep;15(9):333–342. doi: 10.1016/0165-6147(94)90028-0. [DOI] [PubMed] [Google Scholar]
  34. Worley P. F., Heller W. A., Snyder S. H., Baraban J. M. Lithium blocks a phosphoinositide-mediated cholinergic response in hippocampal slices. Science. 1988 Mar 18;239(4846):1428–1429. doi: 10.1126/science.2831626. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES