Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Dec 15;505(Pt 3):633–640. doi: 10.1111/j.1469-7793.1997.633ba.x

Identification of a Zn2+ binding site on the murine GABAA receptor complex: dependence on the second transmembrane domain of beta subunits.

J R Wooltorton 1, B J McDonald 1, S J Moss 1, T G Smart 1
PMCID: PMC1160041  PMID: 9457641

Abstract

1. Whole-cell currents were recorded from Xenopus laevis oocytes expressing wild-type and mutant recombinant GABAA receptors to locate a binding site for Zn2+ ions in the beta 3 subunit. 2. The Cl(-)-selective current, spontaneously gated by beta 3 subunit homomers, was enhanced by pentobarbitone and inhibited by picrotoxinin. The potencies of these agents were minimally affected by mutating histidine (H) 292 to alanine (A) in the second transmembrane domain (TM2). 3. Zn2+ inhibited the beta 3 subunit-gated conductance (IC50, 0.31 microM); the inhibition was voltage insensitive. The H292A mutation in beta 3 subunits caused a 1000-fold reduction in Zn2+ potency (IC50, 307 microM). 4. GABA-activated responses recorded from heteromeric alpha 1 beta 3 GABAA receptors were also inhibited by Zn2+ (IC50, 0.11 microM). This inhibition was reduced by mutating H292A in the beta 3 subunit (IC50, 22.8 microM). 5. H292 in TM2 of the beta 3 subunit is an important determinant of a Zn2+ binding site on the GABAA receptor. Its location in the presumed ion channel lining suggests that Zn2+ can penetrate into an anion-selective channel and that the ionic selectivity filter and channel gate are located beyond H292.

Full text

PDF
633

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belelli D., Lambert J. J., Peters J. A., Wafford K., Whiting P. J. The interaction of the general anesthetic etomidate with the gamma-aminobutyric acid type A receptor is influenced by a single amino acid. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):11031–11036. doi: 10.1073/pnas.94.20.11031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birnir B., Tierney M. L., Dalziel J. E., Cox G. B., Gage P. W. A structural determinant of desensitization and allosteric regulation by pentobarbitone of the GABAA receptor. J Membr Biol. 1997 Jan 15;155(2):157–166. doi: 10.1007/s002329900167. [DOI] [PubMed] [Google Scholar]
  3. Celentano J. J., Gyenes M., Gibbs T. T., Farb D. H. Negative modulation of the gamma-aminobutyric acid response by extracellular zinc. Mol Pharmacol. 1991 Nov;40(5):766–773. [PubMed] [Google Scholar]
  4. Connolly C. N., Krishek B. J., McDonald B. J., Smart T. G., Moss S. J. Assembly and cell surface expression of heteromeric and homomeric gamma-aminobutyric acid type A receptors. J Biol Chem. 1996 Jan 5;271(1):89–96. doi: 10.1074/jbc.271.1.89. [DOI] [PubMed] [Google Scholar]
  5. Davies P. A., Hanna M. C., Hales T. G., Kirkness E. F. Insensitivity to anaesthetic agents conferred by a class of GABA(A) receptor subunit. Nature. 1997 Feb 27;385(6619):820–823. doi: 10.1038/385820a0. [DOI] [PubMed] [Google Scholar]
  6. Draguhn A., Verdorn T. A., Ewert M., Seeburg P. H., Sakmann B. Functional and molecular distinction between recombinant rat GABAA receptor subtypes by Zn2+. Neuron. 1990 Dec;5(6):781–788. doi: 10.1016/0896-6273(90)90337-f. [DOI] [PubMed] [Google Scholar]
  7. Enz R., Bormann J. A single point mutation decreases picrotoxinin sensitivity of the human GABA receptor rho 1 subunit. Neuroreport. 1995 Jul 31;6(11):1569–1572. doi: 10.1097/00001756-199507310-00026. [DOI] [PubMed] [Google Scholar]
  8. Frederickson C. J. Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol. 1989;31:145–238. doi: 10.1016/s0074-7742(08)60279-2. [DOI] [PubMed] [Google Scholar]
  9. Gurley D., Amin J., Ross P. C., Weiss D. S., White G. Point mutations in the M2 region of the alpha, beta, or gamma subunit of the GABAA channel that abolish block by picrotoxin. Receptors Channels. 1995;3(1):13–20. [PubMed] [Google Scholar]
  10. Harrison N. L., Gibbons S. J. Zn2+: an endogenous modulator of ligand- and voltage-gated ion channels. Neuropharmacology. 1994 Aug;33(8):935–952. doi: 10.1016/0028-3908(94)90152-x. [DOI] [PubMed] [Google Scholar]
  11. Krishek B. J., Moss S. J., Smart T. G. Homomeric beta 1 gamma-aminobutyric acid A receptor-ion channels: evaluation of pharmacological and physiological properties. Mol Pharmacol. 1996 Mar;49(3):494–504. [PubMed] [Google Scholar]
  12. Ma J. Y., Narahashi T. Differential modulation of GABAA receptor-channel complex by polyvalent cations in rat dorsal root ganglion neurons. Brain Res. 1993 Apr 2;607(1-2):222–232. doi: 10.1016/0006-8993(93)91510-y. [DOI] [PubMed] [Google Scholar]
  13. Pan Z. H., Bähring R., Grantyn R., Lipton S. A. Differential modulation by sulfhydryl redox agents and glutathione of GABA- and glycine-evoked currents in rat retinal ganglion cells. J Neurosci. 1995 Feb;15(2):1384–1391. doi: 10.1523/JNEUROSCI.15-02-01384.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smart T. G. A novel modulatory binding site for zinc on the GABAA receptor complex in cultured rat neurones. J Physiol. 1992 Feb;447:587–625. doi: 10.1113/jphysiol.1992.sp019020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smart T. G., Constanti A. A novel effect of zinc on the lobster muscle GABA receptor. Proc R Soc Lond B Biol Sci. 1982 Jun 22;215(1200):327–341. doi: 10.1098/rspb.1982.0045. [DOI] [PubMed] [Google Scholar]
  16. Smart T. G., Moss S. J., Xie X., Huganir R. L. GABAA receptors are differentially sensitive to zinc: dependence on subunit composition. Br J Pharmacol. 1991 Aug;103(4):1837–1839. doi: 10.1111/j.1476-5381.1991.tb12337.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smart T. G., Xie X., Krishek B. J. Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog Neurobiol. 1994 Feb;42(3):393–441. doi: 10.1016/0301-0082(94)90082-5. [DOI] [PubMed] [Google Scholar]
  18. Wang T. L., Hackam A. S., Guggino W. B., Cutting G. R. A single amino acid in gamma-aminobutyric acid rho 1 receptors affects competitive and noncompetitive components of picrotoxin inhibition. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11751–11755. doi: 10.1073/pnas.92.25.11751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wooltorton J. R., Moss S. J., Smart T. G. Pharmacological and physiological characterization of murine homomeric beta3 GABA(A) receptors. Eur J Neurosci. 1997 Nov;9(11):2225–2235. doi: 10.1111/j.1460-9568.1997.tb01641.x. [DOI] [PubMed] [Google Scholar]
  20. Xu M., Akabas M. H. Identification of channel-lining residues in the M2 membrane-spanning segment of the GABA(A) receptor alpha1 subunit. J Gen Physiol. 1996 Feb;107(2):195–205. doi: 10.1085/jgp.107.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Xu M., Covey D. F., Akabas M. H. Interaction of picrotoxin with GABAA receptor channel-lining residues probed in cysteine mutants. Biophys J. 1995 Nov;69(5):1858–1867. doi: 10.1016/S0006-3495(95)80056-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES