Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Dec 15;505(Pt 3):655–663. doi: 10.1111/j.1469-7793.1997.655ba.x

Block of open channels of recombinant AMPA receptors and native AMPA/kainate receptors by adamantane derivatives.

L G Magazanik 1, S L Buldakova 1, M V Samoilova 1, V E Gmiro 1, I R Mellor 1, P N Usherwood 1
PMCID: PMC1160043  PMID: 9457643

Abstract

1. The effects of two adamantane derivatives, 1-trimethylammonio-5-(1-adamantane-methyl-ammoniopentane dibromide) (IEM-1460) and 1-ammonio-5-(1-adamantane-methylammoniopentane dibromide) (IEM-1754) on kainate-induced currents were studied in Xenopus oocytes expressing recombinant ionotropic glutamate receptors and in freshly isolated neurones from rat hippocampal slices. 2. The adamantane derivatives caused use- and voltage-dependent block of open channels of recombinant AMPA receptors. This antagonism was dependent on receptor subunit composition; channels gated by recombinant, homomeric GluR1 and GluR3 receptors exhibited a higher sensitivity to block than those gated by receptors containing edited GluR2 subunits. In the former cases, IEM-1460 had an IC50 of 1.6 microM at a holding potential (Vh) of -80 mV and IEM-1754 was 3.8 times less potent than IEM-1460. In contrast, 100 microM IEM-1460 inhibited responses to 100 microM kainate of receptors containing edited GluR2 subunits by only 7.8 +/- 2.4% (n = 5 oocytes at a Vh of -80 mV. 3. Native AMPA/kainate receptors in isolated hippocampal cells were inhibited by adamantane derivatives in a use- and voltage-dependent manner. This antagonism was dependent on cell type: pyramidal neurones were less sensitive to IEM-1460 (IC50 = 1617 microM at Vh = -80 mV) than interneurones (IC50 = 1.6 microM at Vh = -80 mV). IEM-1460 and IEM-1754 were equipotent when applied to pyramidal neurones, but IEM-1754 was less potent (approximately 3 times) than IEM-1460 when applied to interneurones. 4. It is concluded that the presence of the edited GluR2 subunit in recombinant AMPA receptors and native AMPA/kainate receptors inhibits channel block by organic cations and that adamantane derivatives are potentially valuable tools for identifying classes of AMPA/kainate receptors and their roles in synaptic transmission.

Full text

PDF
655

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonov S. M., Dudel J., Franke C., Hatt H. Argiopine blocks glutamate-activated single-channel currents on crayfish muscle by two mechanisms. J Physiol. 1989 Dec;419:569–587. doi: 10.1113/jphysiol.1989.sp017887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antonov S. M., Johnson J. W., Lukomskaya N. Y., Potapyeva N. N., Gmiro V. E., Magazanik L. G. Novel adamantane derivatives act as blockers of open ligand-gated channels and as anticonvulsants. Mol Pharmacol. 1995 Mar;47(3):558–567. [PubMed] [Google Scholar]
  3. Blaschke M., Keller B. U., Rivosecchi R., Hollmann M., Heinemann S., Konnerth A. A single amino acid determines the subunit-specific spider toxin block of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor channels. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6528–6532. doi: 10.1073/pnas.90.14.6528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bochet P., Audinat E., Lambolez B., Crépel F., Rossier J., Iino M., Tsuzuki K., Ozawa S. Subunit composition at the single-cell level explains functional properties of a glutamate-gated channel. Neuron. 1994 Feb;12(2):383–388. doi: 10.1016/0896-6273(94)90279-8. [DOI] [PubMed] [Google Scholar]
  5. Brackley P. T., Bell D. R., Choi S. K., Nakanishi K., Usherwood P. N. Selective antagonism of native and cloned kainate and NMDA receptors by polyamine-containing toxins. J Pharmacol Exp Ther. 1993 Sep;266(3):1573–1580. [PubMed] [Google Scholar]
  6. Burnashev N., Monyer H., Seeburg P. H., Sakmann B. Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron. 1992 Jan;8(1):189–198. doi: 10.1016/0896-6273(92)90120-3. [DOI] [PubMed] [Google Scholar]
  7. Clark R. B., Donaldson P. L., Gration K. A., Lambert J. J., Piek T., Ramsey R., Spanjer W., Usherwood P. N. Block of locust muscle glutamate receptors by delta-philanthotoxin occurs after receptor activations. Brain Res. 1982 Jun 3;241(1):105–114. doi: 10.1016/0006-8993(82)91233-1. [DOI] [PubMed] [Google Scholar]
  8. Dingledine R., Hume R. I., Heinemann S. F. Structural determinants of barium permeation and rectification in non-NMDA glutamate receptor channels. J Neurosci. 1992 Oct;12(10):4080–4087. doi: 10.1523/JNEUROSCI.12-10-04080.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Geiger J. R., Melcher T., Koh D. S., Sakmann B., Seeburg P. H., Jonas P., Monyer H. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron. 1995 Jul;15(1):193–204. doi: 10.1016/0896-6273(95)90076-4. [DOI] [PubMed] [Google Scholar]
  10. Green A. C., Nakanishi K., Usherwood P. N. Polyamine amides are neuroprotective in cerebellar granule cell cultures challenged with excitatory amino acids. Brain Res. 1996 Apr 22;717(1-2):135–146. doi: 10.1016/0006-8993(96)00042-x. [DOI] [PubMed] [Google Scholar]
  11. Götz T., Kraushaar U., Geiger J., Lübke J., Berger T., Jonas P. Functional properties of AMPA and NMDA receptors expressed in identified types of basal ganglia neurons. J Neurosci. 1997 Jan 1;17(1):204–215. doi: 10.1523/JNEUROSCI.17-01-00204.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hollmann M., Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci. 1994;17:31–108. doi: 10.1146/annurev.ne.17.030194.000335. [DOI] [PubMed] [Google Scholar]
  13. Hume R. I., Dingledine R., Heinemann S. F. Identification of a site in glutamate receptor subunits that controls calcium permeability. Science. 1991 Aug 30;253(5023):1028–1031. doi: 10.1126/science.1653450. [DOI] [PubMed] [Google Scholar]
  14. Iino M., Koike M., Isa T., Ozawa S. Voltage-dependent blockage of Ca(2+)-permeable AMPA receptors by joro spider toxin in cultured rat hippocampal neurones. J Physiol. 1996 Oct 15;496(Pt 2):431–437. doi: 10.1113/jphysiol.1996.sp021696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Iino M., Ozawa S., Tsuzuki K. Permeation of calcium through excitatory amino acid receptor channels in cultured rat hippocampal neurones. J Physiol. 1990 May;424:151–165. doi: 10.1113/jphysiol.1990.sp018060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Isa T., Iino M., Itazawa S., Ozawa S. Spermine mediates inward rectification of Ca(2+)-permeable AMPA receptor channels. Neuroreport. 1995 Oct 23;6(15):2045–2048. doi: 10.1097/00001756-199510010-00022. [DOI] [PubMed] [Google Scholar]
  17. Isa T., Itazawa S., Iino M., Tsuzuki K., Ozawa S. Distribution of neurones expressing inwardly rectifying and Ca(2+)-permeable AMPA receptors in rat hippocampal slices. J Physiol. 1996 Mar 15;491(Pt 3):719–733. doi: 10.1113/jphysiol.1996.sp021252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jonas P., Burnashev N. Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels. Neuron. 1995 Nov;15(5):987–990. doi: 10.1016/0896-6273(95)90087-x. [DOI] [PubMed] [Google Scholar]
  19. Jonas P., Racca C., Sakmann B., Seeburg P. H., Monyer H. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron. 1994 Jun;12(6):1281–1289. doi: 10.1016/0896-6273(94)90444-8. [DOI] [PubMed] [Google Scholar]
  20. Kerry C. J., Ramsey R. L., Sansom M. S., Usherwood P. N. Single channel studies of non-competitive antagonism of a quisqualate-sensitive glutamate receptor by argiotoxin636--a fraction isolated from orb-web spider venom. Brain Res. 1988 Sep 6;459(2):312–327. doi: 10.1016/0006-8993(88)90647-6. [DOI] [PubMed] [Google Scholar]
  21. Koh D. S., Burnashev N., Jonas P. Block of native Ca(2+)-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. J Physiol. 1995 Jul 15;486(Pt 2):305–312. doi: 10.1113/jphysiol.1995.sp020813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Koh D. S., Geiger J. R., Jonas P., Sakmann B. Ca(2+)-permeable AMPA and NMDA receptor channels in basket cells of rat hippocampal dentate gyrus. J Physiol. 1995 Jun 1;485(Pt 2):383–402. doi: 10.1113/jphysiol.1995.sp020737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Köhler M., Burnashev N., Sakmann B., Seeburg P. H. Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron. 1993 Mar;10(3):491–500. doi: 10.1016/0896-6273(93)90336-p. [DOI] [PubMed] [Google Scholar]
  24. Leranth C., Szeidemann Z., Hsu M., Buzsáki G. AMPA receptors in the rat and primate hippocampus: a possible absence of GluR2/3 subunits in most interneurons. Neuroscience. 1996 Feb;70(3):631–652. doi: 10.1016/s0306-4522(96)83003-x. [DOI] [PubMed] [Google Scholar]
  25. McBain C. J., Dingledine R. Heterogeneity of synaptic glutamate receptors on CA3 stratum radiatum interneurones of rat hippocampus. J Physiol. 1993 Mar;462:373–392. doi: 10.1113/jphysiol.1993.sp019560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Neely A., Lingle C. J. Trapping of an open-channel blocker at the frog neuromuscular acetylcholine channel. Biophys J. 1986 Nov;50(5):981–986. doi: 10.1016/S0006-3495(86)83538-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Petralia R. S., Wenthold R. J. Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J Comp Neurol. 1992 Apr 15;318(3):329–354. doi: 10.1002/cne.903180309. [DOI] [PubMed] [Google Scholar]
  28. Randle J. C. Tetrabutylammonium induces a voltage-dependent block of kainate current in Xenopus oocytes injected with rat brain mRNA. Can J Physiol Pharmacol. 1990 Aug;68(8):1069–1078. doi: 10.1139/y90-161. [DOI] [PubMed] [Google Scholar]
  29. Sudan H. L., Kerry C. J., Mellor I. R., Choi S. K., Huang D., Nakanishi K., Usherwood P. N. The action of philanthotoxin-343 and photolabile analogues on locust (Schistocerca gregaria) muscle. Invert Neurosci. 1995;1(2):159–172. doi: 10.1007/BF02331913. [DOI] [PubMed] [Google Scholar]
  30. Tsubokawa H., Oguro K., Masuzawa T., Kawai N. Ca(2+)-dependent non-NMDA receptor-mediated synaptic currents in ischemic CA1 hippocampal neurons. J Neurophysiol. 1994 Mar;71(3):1190–1196. doi: 10.1152/jn.1994.71.3.1190. [DOI] [PubMed] [Google Scholar]
  31. Vorobjev V. S., Sharonova I. N., Haas H. L. A simple perfusion system for patch-clamp studies. J Neurosci Methods. 1996 Oct;68(2):303–307. doi: 10.1016/0165-0270(96)00097-0. [DOI] [PubMed] [Google Scholar]
  32. Vorobjev V. S. Vibrodissociation of sliced mammalian nervous tissue. J Neurosci Methods. 1991 Jul;38(2-3):145–150. doi: 10.1016/0165-0270(91)90164-u. [DOI] [PubMed] [Google Scholar]
  33. Wenthold R. J., Petralia R. S., Blahos J I. I., Niedzielski A. S. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci. 1996 Mar 15;16(6):1982–1989. doi: 10.1523/JNEUROSCI.16-06-01982.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wisden W., Seeburg P. H. Mammalian ionotropic glutamate receptors. Curr Opin Neurobiol. 1993 Jun;3(3):291–298. doi: 10.1016/0959-4388(93)90120-n. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES