Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Dec 15;505(Pt 3):797–809. doi: 10.1111/j.1469-7793.1997.797ba.x

Pathway-specific effects of calcitonin gene-related peptide on irideal arterioles of the rat.

C E Hill 1, D J Gould 1
PMCID: PMC1160053  PMID: 9457653

Abstract

1. Arteriolar diameter and membrane voltage have been measured to investigate the actions of calcitonin gene-related peptide (CGRP) in rat irideal arterioles. 2. Activation of sensory nerves inhibited sympathetic vasoconstriction, reduced the accompanying 40-50 mV depolarization by 90% and caused a 4 mV hyperpolarization. 3. The inhibition of vasoconstriction was prevented by either preincubation in L-NAME (10 microM), to inhibit nitric oxide production, by preincubation in the cell-permeant adenylate cyclase inhibitor dideoxyadenosine (1 mM) or by preincubation in the ATP-sensitive potassium channel blocker glibenclamide (10 microM). The subsequent addition of a nitric oxide donor to the glibenclamide solution inhibited nerve-mediated vasoconstriction, suggesting that the potassium channel involvement preceded the production of nitric oxide. The small hyperpolarization was not affected by L-NAME. 4. Nerve-mediated vasodilatation persisted in the presence of L-NAME (10 microM) but was abolished with the CGRP1 receptor antagonist CGRPS-37. 5. In arterioles preconstricted with the alpha 2-adrenoceptor agonist UK-14304 (100 nM), exogenous CGRP caused a hyperpolarization and a dose-dependent vasodilatation, neither of which was affected by L-NAME (10 microM). 6. In arterioles preconstricted with 30 mM KCl, CGRP (10 nM) caused vasodilatation but not hyperpolarization, suggesting that the hyperpolarization was not causal to the vasodilatation. 7. Forskolin (30 nM), in the presence of L-NAME to present effects due to nitric oxide, caused vasodilatation. 8. These results suggest that CGRP inhibits sympathetic nerve-mediated vasoconstriction through sequential increases in cyclic AMP and nitric oxide, while vasodilatation results from increases in cyclic AMP alone. The production of nitric oxide, but not its mechanism of action, appears to be dependent on the activation of ATP-sensitive potassium channels. The possible sites of action of these two pathways are discussed.

Full text

PDF
797

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdelrahman A., Wang Y. X., Chang S. D., Pang C. C. Mechanism of the vasodilator action of calcitonin gene-related peptide in conscious rats. Br J Pharmacol. 1992 May;106(1):45–48. doi: 10.1111/j.1476-5381.1992.tb14290.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aisaka K., Gross S. S., Griffith O. W., Levi R. L-arginine availability determines the duration of acetylcholine-induced systemic vasodilation in vivo. Biochem Biophys Res Commun. 1989 Sep 15;163(2):710–717. doi: 10.1016/0006-291x(89)92281-x. [DOI] [PubMed] [Google Scholar]
  3. Amerini S., Mantelli L., Ledda F. Nitric oxide is not involved in the effects induced by non-adrenergic non-cholinergic stimulation and calcitonin gene-related peptide in the rat mesenteric vascular bed. Neuropeptides. 1993 Jul;25(1):51–55. doi: 10.1016/0143-4179(93)90068-l. [DOI] [PubMed] [Google Scholar]
  4. Bodelsson G., Stjernquist M. Smooth muscle dilatation in the human uterine artery induced by substance P, vasoactive intestinal polypeptide, calcitonin gene-related peptide and atrial natriuretic peptide: relation to endothelium-derived relaxing substances. Hum Reprod. 1992 Oct;7(9):1185–1188. doi: 10.1093/oxfordjournals.humrep.a137823. [DOI] [PubMed] [Google Scholar]
  5. Bogle R. G., Baydoun A. R., Pearson J. D., Mann G. E. Regulation of L-arginine transport and nitric oxide release in superfused porcine aortic endothelial cells. J Physiol. 1996 Jan 1;490(Pt 1):229–241. doi: 10.1113/jphysiol.1996.sp021138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brain S. D., Hughes S. R., Cambridge H., O'Driscoll G. The contribution of calcitonin gene-related peptide (CGRP) to neurogenic vasodilator responses. Agents Actions. 1993;38(Spec No):C19–C21. doi: 10.1007/BF01991124. [DOI] [PubMed] [Google Scholar]
  7. Brain S. D., Williams T. J., Tippins J. R., Morris H. R., MacIntyre I. Calcitonin gene-related peptide is a potent vasodilator. Nature. 1985 Jan 3;313(5997):54–56. doi: 10.1038/313054a0. [DOI] [PubMed] [Google Scholar]
  8. Brizzolara A. L., Burnstock G. Endothelium-dependent and endothelium-independent vasodilatation of the hepatic artery of the rabbit. Br J Pharmacol. 1991 May;103(1):1206–1212. doi: 10.1111/j.1476-5381.1991.tb12325.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bråtveit M., Haugan A., Helle K. B. Effects of calcitonin gene-related peptide (CGRP) on regional haemodynamics and on selected hepato-splanchnic arteries from the rat: a comparison with VIP and atriopeptin II. Scand J Clin Lab Invest. 1991 Apr;51(2):167–174. doi: 10.1080/00365519109091104. [DOI] [PubMed] [Google Scholar]
  10. Bråtveit M., Helle K. B. Vasodilation by calcitonin gene-related peptide (CGRP) and by transmural stimulation of the methoxamine-contracted rat hepatic artery after pretreatment with guanethidine. Scand J Clin Lab Invest. 1991 Jun;51(4):395–401. doi: 10.1080/00365519109091631. [DOI] [PubMed] [Google Scholar]
  11. Bussolati O., Laris P. C., Nucci F. A., Dall'Asta V., Franchi-Gazzola R., Guidotti G. G., Gazzola G. C. Influx of L-arginine is an indicator of membrane potential in human fibroblasts. Am J Physiol. 1989 Apr;256(4 Pt 1):C930–C935. doi: 10.1152/ajpcell.1989.256.4.C930. [DOI] [PubMed] [Google Scholar]
  12. Chen X. L., Rembold C. M. Cyclic nucleotide-dependent regulation of Mn2+ influx, [Ca2+]i, and arterial smooth muscle relaxation. Am J Physiol. 1992 Aug;263(2 Pt 1):C468–C473. doi: 10.1152/ajpcell.1992.263.2.C468. [DOI] [PubMed] [Google Scholar]
  13. Fiscus R. R., Zhou H. L., Wang X., Han C., Ali S., Joyce C. D., Murad F. Calcitonin gene-related peptide (CGRP)-induced cyclic AMP, cyclic GMP and vasorelaxant responses in rat thoracic aorta are antagonized by blockers of endothelium-derived relaxant factor (EDRF). Neuropeptides. 1991 Oct;20(2):133–143. doi: 10.1016/0143-4179(91)90063-o. [DOI] [PubMed] [Google Scholar]
  14. Gao Y., Nishimura Y., Suzuki A., Yoshida K. Relaxant effects of calcitonin gene-related peptide on isolated small renal arteries in stroke-prone spontaneously hypertensive rats. J Smooth Muscle Res. 1994 Feb;30(1):9–19. doi: 10.1540/jsmr.30.9. [DOI] [PubMed] [Google Scholar]
  15. Gould D. J., Hill C. E. Alpha 1B-receptors and intracellular calcium mediate sympathetic nerve induced constriction of rat irideal blood vessels. J Auton Nerv Syst. 1994 Dec 15;50(2):139–150. doi: 10.1016/0165-1838(94)90004-3. [DOI] [PubMed] [Google Scholar]
  16. Gould D. J., Vidovic M., Hill C. E. Cross talk between receptors mediating contraction and relaxation in the arterioles but not the dilator muscle of the rat iris. Br J Pharmacol. 1995 Jul;115(5):828–834. doi: 10.1111/j.1476-5381.1995.tb15007.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gray D. W., Marshall I. Human alpha-calcitonin gene-related peptide stimulates adenylate cyclase and guanylate cyclase and relaxes rat thoracic aorta by releasing nitric oxide. Br J Pharmacol. 1992 Nov;107(3):691–696. doi: 10.1111/j.1476-5381.1992.tb14508.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gray D. W., Marshall I. Nitric oxide synthesis inhibitors attenuate calcitonin gene-related peptide endothelium-dependent vasorelaxation in rat aorta. Eur J Pharmacol. 1992 Feb 25;212(1):37–42. doi: 10.1016/0014-2999(92)90069-g. [DOI] [PubMed] [Google Scholar]
  19. Han S. P., Naes L., Westfall T. C. Calcitonin gene-related peptide is the endogenous mediator of nonadrenergic-noncholinergic vasodilation in rat mesentery. J Pharmacol Exp Ther. 1990 Nov;255(2):423–428. [PubMed] [Google Scholar]
  20. Hill C. E., Gould D. J. Modulation of sympathetic vasoconstriction by sensory nerves and nitric oxide in rat irideal arterioles. J Pharmacol Exp Ther. 1995 May;273(2):918–926. [PubMed] [Google Scholar]
  21. Hill C. E., Hirst G. D., van Helden D. F. Development of sympathetic innervation to proximal and distal arteries of the rat mesentery. J Physiol. 1983 May;338:129–147. doi: 10.1113/jphysiol.1983.sp014665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hirst G. D., Edwards F. R. Sympathetic neuroeffector transmission in arteries and arterioles. Physiol Rev. 1989 Apr;69(2):546–604. doi: 10.1152/physrev.1989.69.2.546. [DOI] [PubMed] [Google Scholar]
  23. Holzer P., Lippe I. T., Jocic M., Wachter C., Erb R., Heinemann A. Nitric oxide-dependent and -independent hyperaemia due to calcitonin gene-related peptide in the rat stomach. Br J Pharmacol. 1993 Sep;110(1):404–410. doi: 10.1111/j.1476-5381.1993.tb13824.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Holzer P., Wachter C., Jocic M., Heinemann A. Vascular bed-dependent roles of the peptide CGRP and nitric oxide in acid-evoked hyperaemia of the rat stomach. J Physiol. 1994 Nov 1;480(Pt 3):575–585. doi: 10.1113/jphysiol.1994.sp020385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kawasaki H., Takasaki K., Saito A., Goto K. Calcitonin gene-related peptide acts as a novel vasodilator neurotransmitter in mesenteric resistance vessels of the rat. Nature. 1988 Sep 8;335(6186):164–167. doi: 10.1038/335164a0. [DOI] [PubMed] [Google Scholar]
  26. Kim C., Roberts A. M., Joshua I. G. Differences in the capsaicin-induced dilation of arterioles and venules in rat striated muscle. J Pharmacol Exp Ther. 1995 May;273(2):605–610. [PubMed] [Google Scholar]
  27. Kitazono T., Heistad D. D., Faraci F. M. Role of ATP-sensitive K+ channels in CGRP-induced dilatation of basilar artery in vivo. Am J Physiol. 1993 Aug;265(2 Pt 2):H581–H585. doi: 10.1152/ajpheart.1993.265.2.H581. [DOI] [PubMed] [Google Scholar]
  28. Kobayashi D., Todoki K., Ozono S., Okabe E. Calcitonin gene-related peptide mediated neurogenic vasorelaxation in the isolated canine lingual artery. Jpn J Pharmacol. 1995 Apr;67(4):329–339. doi: 10.1254/jjp.67.329. [DOI] [PubMed] [Google Scholar]
  29. La M., Rand M. J. Neurogenic vasodilatation in isolated perfused segments of rabbit jejunal artery. Clin Exp Pharmacol Physiol. 1993 May;20(5):355–358. doi: 10.1111/j.1440-1681.1993.tb01704.x. [DOI] [PubMed] [Google Scholar]
  30. Lei S., Mulvany M. J., Nyborg N. C. Characterization of the CGRP receptor and mechanisms of action in rat mesenteric small arteries. Pharmacol Toxicol. 1994 Feb;74(2):130–135. doi: 10.1111/j.1600-0773.1994.tb01087.x. [DOI] [PubMed] [Google Scholar]
  31. Li Y. J., Duckles S. P. Effect of endothelium on the actions of sympathetic and sensory nerves in the perfused rat mesentery. Eur J Pharmacol. 1992 Jan 7;210(1):23–30. doi: 10.1016/0014-2999(92)90647-m. [DOI] [PubMed] [Google Scholar]
  32. McDaniel N. L., Chen X. L., Singer H. A., Murphy R. A., Rembold C. M. Nitrovasodilators relax arterial smooth muscle by decreasing [Ca2+]i and uncoupling stress from myosin phosphorylation. Am J Physiol. 1992 Aug;263(2 Pt 1):C461–C467. doi: 10.1152/ajpcell.1992.263.2.C461. [DOI] [PubMed] [Google Scholar]
  33. Meehan A. G., Hottenstein O. D., Kreulen D. L. Capsaicin-sensitive nerves mediate inhibitory junction potentials and dilatation in guinea-pig mesenteric artery. J Physiol. 1991 Nov;443:161–174. doi: 10.1113/jphysiol.1991.sp018828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Miyoshi H., Nakaya Y. Calcitonin gene-related peptide activates the K+ channels of vascular smooth muscle cells via adenylate cyclase. Basic Res Cardiol. 1995 Jul-Aug;90(4):332–336. doi: 10.1007/BF00797911. [DOI] [PubMed] [Google Scholar]
  35. Murthy K. S., Makhlouf G. M. Interaction of cA-kinase and cG-kinase in mediating relaxation of dispersed smooth muscle cells. Am J Physiol. 1995 Jan;268(1 Pt 1):C171–C180. doi: 10.1152/ajpcell.1995.268.1.C171. [DOI] [PubMed] [Google Scholar]
  36. Murthy K. S., Severi C., Grider J. R., Makhlouf G. M. Inhibition of IP3 and IP3-dependent Ca2+ mobilization by cyclic nucleotides in isolated gastric muscle cells. Am J Physiol. 1993 May;264(5 Pt 1):G967–G974. doi: 10.1152/ajpgi.1993.264.5.G967. [DOI] [PubMed] [Google Scholar]
  37. Neild T. O. Measurement of arteriole diameter changes by analysis of television images. Blood Vessels. 1989;26(1):48–52. [PubMed] [Google Scholar]
  38. Nelson M. T., Huang Y., Brayden J. E., Hescheler J., Standen N. B. Arterial dilations in response to calcitonin gene-related peptide involve activation of K+ channels. Nature. 1990 Apr 19;344(6268):770–773. doi: 10.1038/344770a0. [DOI] [PubMed] [Google Scholar]
  39. Oyama H., Suzuki Y., Satoh S., Kajita Y., Takayasu M., Shibuya M., Sugita K. Role of nitric oxide in the cerebral vasodilatory responses to vasopressin and oxytocin in dogs. J Cereb Blood Flow Metab. 1993 Mar;13(2):285–290. doi: 10.1038/jcbfm.1993.35. [DOI] [PubMed] [Google Scholar]
  40. Persson M. G., Hedqvist P., Gustafsson L. E. Nerve-induced tachykinin-mediated vasodilation in skeletal muscle is dependent on nitric oxide formation. Eur J Pharmacol. 1991 Dec 3;205(3):295–301. doi: 10.1016/0014-2999(91)90913-b. [DOI] [PubMed] [Google Scholar]
  41. Quayle J. M., Bonev A. D., Brayden J. E., Nelson M. T. Calcitonin gene-related peptide activated ATP-sensitive K+ currents in rabbit arterial smooth muscle via protein kinase A. J Physiol. 1994 Feb 15;475(1):9–13. doi: 10.1113/jphysiol.1994.sp020045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ralevic V., Khalil Z., Dusting G. J., Helme R. D. Nitric oxide and sensory nerves are involved in the vasodilator response to acetylcholine but not calcitonin gene-related peptide in rat skin microvasculature. Br J Pharmacol. 1992 Jul;106(3):650–655. doi: 10.1111/j.1476-5381.1992.tb14390.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rosenblum W. I., Shimizu T., Nelson G. H. Endothelium-dependent effects of substance P and calcitonin gene-related peptide on mouse pial arterioles. Stroke. 1993 Jul;24(7):1043–1048. doi: 10.1161/01.str.24.7.1043. [DOI] [PubMed] [Google Scholar]
  44. Saito A., Masaki T., Uchiyama Y., Lee T. J., Goto K. Calcitonin gene-related peptide and vasodilator nerves in large cerebral arteries of cats. J Pharmacol Exp Ther. 1989 Jan;248(1):455–462. [PubMed] [Google Scholar]
  45. Zschauer A., Uusitalo H., Brayden J. E. Role of endothelium and hyperpolarization in CGRP-induced vasodilation of rabbit ophthalmic artery. Am J Physiol. 1992 Aug;263(2 Pt 2):H359–H365. doi: 10.1152/ajpheart.1992.263.2.H359. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES