Abstract
1. Vasomotor responses (VMR) induced by local electrical stimulation were studied in the vasculature of the split hydronephrotic rat kidney by in vivo microscopy. 2. Unipolar pulses, which were applied by a micropipette positioned close to the vessel wall, elicited local and propagated VMR. Depolarizing and hyperpolarizing currents caused vasoconstriction and vasodilatation, respectively. 3. The magnitude of VMR could be controlled within seconds by variation of pulse frequency, pulse width and voltage. VMR were abolished by slight retraction of the stimulating micropipette. Repetitive electrical stimulation resulted in reproducibly uniform VMR. 4. Propagated VMR decayed with increasing distance from the stimulation site. They decayed more rapidly in the upstream than in the downstream flow direction in interlobular arteries. The longitudinal decay was well approximated by an exponential function with significantly different length constants of 150 +/- 40 microns (upstream, n = 5) and 420 +/- 90 microns (downstream, n = 8). 5. Our results show that vasomotor responses, which are initiated by changes in membrane potential, are propagated over distances of potential physiological importance in interlobular arteries.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carmines P. K., Fowler B. C., Bell P. D. Segmentally distinct effects of depolarization on intracellular [Ca2+] in renal arterioles. Am J Physiol. 1993 Nov;265(5 Pt 2):F677–F685. doi: 10.1152/ajprenal.1993.265.5.F677. [DOI] [PubMed] [Google Scholar]
- Carmines P. K., Inscho E. W., Gensure R. C. Arterial pressure effects on preglomerular microvasculature of juxtamedullary nephrons. Am J Physiol. 1990 Jan;258(1 Pt 2):F94–102. doi: 10.1152/ajprenal.1990.258.1.F94. [DOI] [PubMed] [Google Scholar]
- Chen Y. M., Yip K. P., Marsh D. J., Holstein-Rathlou N. H. Magnitude of TGF-initiated nephron-nephron interactions is increased in SHR. Am J Physiol. 1995 Aug;269(2 Pt 2):F198–F204. doi: 10.1152/ajprenal.1995.269.2.F198. [DOI] [PubMed] [Google Scholar]
- Conger J. D., Falk S. A. KCl and angiotensin responses in isolated rat renal arterioles: effects of diltiazem and low-calcium medium. Am J Physiol. 1993 Jan;264(1 Pt 2):F134–F140. doi: 10.1152/ajprenal.1993.264.1.F134. [DOI] [PubMed] [Google Scholar]
- Delashaw J. B., Duling B. R. Heterogeneity in conducted arteriolar vasomotor response is agonist dependent. Am J Physiol. 1991 Apr;260(4 Pt 2):H1276–H1282. doi: 10.1152/ajpheart.1991.260.4.H1276. [DOI] [PubMed] [Google Scholar]
- Duling B. R., Berne R. M. Propagated vasodilation in the microcirculation of the hamster cheek pouch. Circ Res. 1970 Feb;26(2):163–170. doi: 10.1161/01.res.26.2.163. [DOI] [PubMed] [Google Scholar]
- Hollenberg N. K., Meyerovitz M., Harrington D. P., Sandor T. Influence of norepinephrine and angiotensin II on vasomotion of renal blood supply in humans. Am J Physiol. 1987 May;252(5 Pt 2):H941–H944. doi: 10.1152/ajpheart.1987.252.5.H941. [DOI] [PubMed] [Google Scholar]
- Holstein-Rathlou N. H. Synchronization of proximal intratubular pressure oscillations: evidence for interaction between nephrons. Pflugers Arch. 1987 May;408(5):438–443. doi: 10.1007/BF00585066. [DOI] [PubMed] [Google Scholar]
- Kolb H. A., Somogyi R. Biochemical and biophysical analysis of cell-to-cell channels and regulation of gap junctional permeability. Rev Physiol Biochem Pharmacol. 1991;118:1–47. doi: 10.1007/BFb0031480. [DOI] [PubMed] [Google Scholar]
- Källskog O., Marsh D. J. TGF-initiated vascular interactions between adjacent nephrons in the rat kidney. Am J Physiol. 1990 Jul;259(1 Pt 2):F60–F64. doi: 10.1152/ajprenal.1990.259.1.F60. [DOI] [PubMed] [Google Scholar]
- Loutzenhiser R., Epstein M., Hayashi K., Horton C. Direct visualization of effects of endothelin on the renal microvasculature. Am J Physiol. 1990 Jan;258(1 Pt 2):F61–F68. doi: 10.1152/ajprenal.1990.258.1.F61. [DOI] [PubMed] [Google Scholar]
- Mink D., Schiller A., Kriz W., Taugner R. Interendothelial junctions in kidney vessels. Cell Tissue Res. 1984;236(3):567–576. doi: 10.1007/BF00217224. [DOI] [PubMed] [Google Scholar]
- Moore L. C., Casellas D. Tubuloglomerular feedback dependence of autoregulation in rat juxtamedullary afferent arterioles. Kidney Int. 1990 Jun;37(6):1402–1408. doi: 10.1038/ki.1990.129. [DOI] [PubMed] [Google Scholar]
- Navar L. G., Inscho E. W., Majid S. A., Imig J. D., Harrison-Bernard L. M., Mitchell K. D. Paracrine regulation of the renal microcirculation. Physiol Rev. 1996 Apr;76(2):425–536. doi: 10.1152/physrev.1996.76.2.425. [DOI] [PubMed] [Google Scholar]
- Nobiling R., Gabel M., Persson P. B., Dietrich M. S., Bührle C. P. Differential effect of neuropeptide-Y on membrane potential of cells in renal arterioles of the hydronephrotic mouse. J Physiol. 1991 Dec;444:317–327. doi: 10.1113/jphysiol.1991.sp018880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oien A. H., Aukland K. A multinephron model of renal blood flow autoregulation by tubuloglomerular feedback and myogenic response. Acta Physiol Scand. 1991 Sep;143(1):71–92. doi: 10.1111/j.1748-1716.1991.tb09203.x. [DOI] [PubMed] [Google Scholar]
- Segal S. S., Bény J. L. Intracellular recording and dye transfer in arterioles during blood flow control. Am J Physiol. 1992 Jul;263(1 Pt 2):H1–H7. doi: 10.1152/ajpheart.1992.263.1.H1. [DOI] [PubMed] [Google Scholar]
- Segal S. S., Damon D. N., Duling B. R. Propagation of vasomotor responses coordinates arteriolar resistances. Am J Physiol. 1989 Mar;256(3 Pt 2):H832–H837. doi: 10.1152/ajpheart.1989.256.3.H832. [DOI] [PubMed] [Google Scholar]
- Segal S. S., Duling B. R. Conduction of vasomotor responses in arterioles: a role for cell-to-cell coupling? Am J Physiol. 1989 Mar;256(3 Pt 2):H838–H845. doi: 10.1152/ajpheart.1989.256.3.H838. [DOI] [PubMed] [Google Scholar]
- Segal S. S., Duling B. R. Flow control among microvessels coordinated by intercellular conduction. Science. 1986 Nov 14;234(4778):868–870. doi: 10.1126/science.3775368. [DOI] [PubMed] [Google Scholar]
- Segal S. S. Microvascular recruitment in hamster striated muscle: role for conducted vasodilation. Am J Physiol. 1991 Jul;261(1 Pt 2):H181–H189. doi: 10.1152/ajpheart.1991.261.1.H181. [DOI] [PubMed] [Google Scholar]
- Steinhausen M., Snoei H., Parekh N., Baker R., Johnson P. C. Hydronephrosis: a new method to visualize vas afferens, efferens, and glomerular network. Kidney Int. 1983 Jun;23(6):794–806. doi: 10.1038/ki.1983.98. [DOI] [PubMed] [Google Scholar]
- Taugner R., Kirchheim H., Forssmann W. G. Myoendothelial contacts in glomerular arterioles and in renal interlobular arteries of rat, mouse and Tupaia belangeri. Cell Tissue Res. 1984;235(2):319–325. doi: 10.1007/BF00217856. [DOI] [PubMed] [Google Scholar]