Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Nov 13:2024.11.12.622518. [Version 1] doi: 10.1101/2024.11.12.622518

Targeted pre-conditioning and cell transplantation in the murine lower respiratory tract

Anat Kohn, Michael J Herriges, Payel Basak, Liang Ma, Bibek R Thapa, Darrell N Kotton, Finn J Hawkins
PMCID: PMC11601482  PMID: 39605510

Abstract

Transplantation of airway basal stem cells could achieve a durable cure for genetic diseases of the airway, such as cystic fibrosis and primary ciliary dyskinesia. Recent work demonstrated the potential of primary- and pluripotent stem cell (PSC)-derived basal cells to efficiently engrai into the mouse trachea aier injury. However, there are many hurdles to overcome in translating these approaches to humans including developing safe and efficient methods for delivery in larger animal models. We propose a model which targets preconditioning and cell-delivery to the intrapulmonary airways utilizing a micro- bronchoscope for delivery. The detergent polidocanol was adapted for distal lung pre-conditioning, inducing intrapulmonary airway epithelial denudation by 5 and 24-hours post-delivery. While initial re- epithelialization of airways occurred later than tracheas, complete repair was observed within 7-days. Both PSC-derived and primary basal cells delivered via micro-bronchoscope post-polidocanol injury engraied in tracheas and intrapulmonary airways, respectively. Transplanted cells differentiated into ciliated and secretory lineages while maintaining a population of basal cells. These findings demonstrate the utility of bronchoscopically targeted pre-conditioning and cell delivery to the conducting intra- pulmonary airways, providing an important framework for pre-clinical translation of approaches for engineered airway epithelial regeneration.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES