Abstract
1. A new methodological approach for detailed study of the organization of the cerebellar corticonuclear projection was evaluated in barbiturate-anaesthetized cats. Extracellular field potentials were simultaneously recorded in nucleus interpositus anterior and in the forelimb area of the C3 zone, at the cerebellar surface. On electrical and natural stimulation of the forelimb skin, the evoked positive field potentials in the nucleus and the climbing fibre field potentials in the cerebellar cortex had similar characteristics, indicating that the nuclear potentials were related to climbing fibre activity. 2. Application of a local anaesthetic to the cerebellar surface reversibly diminished the positive field potentials in the nucleus, demonstrating that the potentials were dependent on cerebellar cortical activity. It was thus concluded that the positive field potentials were mainly generated by climbing fibre-activated Purkinje cells and reflected synaptic inhibitory potentials in nuclear neurones. Accordingly, the positive field potentials in the nucleus could be used to reveal the termination area of Purkinje cells activated by a specific climbing fibre input evoked on peripheral stimulation. 3. The topographical organization of the cerebellar cortical projection to the forelimb part of nucleus interpositus anterior was then investigated by systematically mapping the cutaneous tactile and nociceptive 'receptive fields' of the positive field potentials at different sites in the nucleus. Five groups of receptive fields were distinguished and tentatively divided into a total of nineteen subgroups. 4. Each group of receptive fields corresponded to one or two of the previously described receptive field classes of climbing fibres to the C1, C3 and Y zones and was represented in a single area of the nucleus. Within each area there was an orderly representation of different receptive fields. The results suggest that microzones in the C1, C3 and Y zones with similar climbing fibre input project to a common set of neurones in nucleus interpositus anterior. 5. We propose a modular organization for the cerebellar control of forelimb movements through the rubrospinal tract. Each module would consist of a set of neurones in nucleus interpositus anterior and their afferent microzones in the C1, C3 and Y zones. A module would control a specific group of muscles and receive a homogeneous climbing fibre input related to the movement controlled.
Full text
PDF















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersson G., Hesslow G. Activity of Purkinje cells and interpositus neurones during and after periods of high frequency climbing fibre activation in the cat. Exp Brain Res. 1987;67(3):533–542. doi: 10.1007/BF00247286. [DOI] [PubMed] [Google Scholar]
- Andersson G., Oscarsson O. Climbing fiber microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Exp Brain Res. 1978 Aug 15;32(4):565–579. doi: 10.1007/BF00239553. [DOI] [PubMed] [Google Scholar]
- Armstrong D. M., Harvey R. J., Schild R. F. Cerebello-cerebellar responses mediated via climbing fibres. Exp Brain Res. 1973 Aug 31;18(1):19–39. doi: 10.1007/BF00236554. [DOI] [PubMed] [Google Scholar]
- Armstrong D. M., Harvey R. J., Schild R. F. The spatial organisation of climbing fibre branching in the cat cerebellum. Exp Brain Res. 1973 Aug 31;18(1):40–58. doi: 10.1007/BF00236555. [DOI] [PubMed] [Google Scholar]
- Asanuma H., Hunsperger R. W. Functional significance of projection from the cerebellar nuclei to the motor cortex in the cat. Brain Res. 1975 Nov 7;98(1):73–92. doi: 10.1016/0006-8993(75)90510-7. [DOI] [PubMed] [Google Scholar]
- Bishop G. A., McCrea R. A., Lighthall J. W., Kitai S. T. An HRP and autoradiographic study of the projection from the cerebellar cortex to the nucleus interpositus anterior and nucleus interpositus posterior of the cat. J Comp Neurol. 1979 Jun 15;185(4):735–756. doi: 10.1002/cne.901850408. [DOI] [PubMed] [Google Scholar]
- Ekerot C. F., Garwicz M., Schouenborg J. The postsynaptic dorsal column pathway mediates cutaneous nociceptive information to cerebellar climbing fibres in the cat. J Physiol. 1991 Sep;441:275–284. doi: 10.1113/jphysiol.1991.sp018751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ekerot C. F., Garwicz M., Schouenborg J. Topography and nociceptive receptive fields of climbing fibres projecting to the cerebellar anterior lobe in the cat. J Physiol. 1991 Sep;441:257–274. doi: 10.1113/jphysiol.1991.sp018750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ekerot C. F., Kano M. Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Res. 1985 Sep 9;342(2):357–360. doi: 10.1016/0006-8993(85)91136-9. [DOI] [PubMed] [Google Scholar]
- Ekerot C. F., Larson B. Branching of olivary axons to innervate pairs of sagittal zones in the cerebellar anterior lobe of the cat. Exp Brain Res. 1982;48(2):185–198. doi: 10.1007/BF00237214. [DOI] [PubMed] [Google Scholar]
- Ekerot C. F., Larson B. The dorsal spino-olivocerebellar system in the cat. I. Functional organization and termination in the anterior lobe. Exp Brain Res. 1979 Jul 2;36(2):201–217. doi: 10.1007/BF00238905. [DOI] [PubMed] [Google Scholar]
- Ekerot C. F., Larson B. The dorsal spino-olivocerebellar system in the cat. II. Somatotopical organization. Exp Brain Res. 1979 Jul 2;36(2):219–232. doi: 10.1007/BF00238906. [DOI] [PubMed] [Google Scholar]
- Ekerot C. F., Oscarsson O., Schouenborg J. Stimulation of cat cutaneous nociceptive C fibres causing tonic and synchronous activity in climbing fibres. J Physiol. 1987 May;386:539–546. doi: 10.1113/jphysiol.1987.sp016550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghez C. Input-output relations of the red nucleus in the cat. Brain Res. 1975 Nov 7;98(1):93–308. doi: 10.1016/0006-8993(75)90511-9. [DOI] [PubMed] [Google Scholar]
- Gibson A. R., Robinson F. R., Alam J., Houk J. C. Somatotopic alignment between climbing fiber input and nuclear output of the cat intermediate cerebellum. J Comp Neurol. 1987 Jun 15;260(3):362–377. doi: 10.1002/cne.902600304. [DOI] [PubMed] [Google Scholar]
- Giuffrida R., Li Volsi G., Pantò M. R., Perciavalle V., Sapienza S., Urbano A. Single muscle organization of interposito-rubral projections. Exp Brain Res. 1980;39(3):261–267. doi: 10.1007/BF00237115. [DOI] [PubMed] [Google Scholar]
- Gordon M., Rubia F. J., Strata P. The effect of pentothal on the activity evoked in the cerebellar cortex. Exp Brain Res. 1973 Mar 29;17(1):50–62. doi: 10.1007/BF00234563. [DOI] [PubMed] [Google Scholar]
- Groenewegen H. J., Voogd J., Freedman S. L. The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum. J Comp Neurol. 1979 Feb 1;183(3):551–601. doi: 10.1002/cne.901830307. [DOI] [PubMed] [Google Scholar]
- Ito M. Long-term depression. Annu Rev Neurosci. 1989;12:85–102. doi: 10.1146/annurev.ne.12.030189.000505. [DOI] [PubMed] [Google Scholar]
- Ito M., Sakurai M., Tongroach P. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol. 1982 Mar;324:113–134. doi: 10.1113/jphysiol.1982.sp014103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito M., Yoshida M., Obata K., Kawai N., Udo M. Inhibitory control of intracerebellar nuclei by the purkinje cell axons. Exp Brain Res. 1970;10(1):64–80. doi: 10.1007/BF00340519. [DOI] [PubMed] [Google Scholar]
- LARSELL O. The cerebellum of the cat and the monkey. J Comp Neurol. 1953 Aug;99(1):135–199. doi: 10.1002/cne.900990110. [DOI] [PubMed] [Google Scholar]
- Larsen K. D., Yumiya H. Organization of the convergence in the intermediate cerebellar nuclei of somatosensory receptive fields with motor cortical-evoked responses. Exp Brain Res. 1979 Aug 1;36(3):477–489. doi: 10.1007/BF00238517. [DOI] [PubMed] [Google Scholar]
- Latham A., Paul D. H. Effects of sodium thiopentone on cerebellar neurone activity. Brain Res. 1971 Jan 8;25(1):212–215. doi: 10.1016/0006-8993(71)90585-3. [DOI] [PubMed] [Google Scholar]
- Llinas R., Baker R., Sotelo C. Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol. 1974 May;37(3):560–571. doi: 10.1152/jn.1974.37.3.560. [DOI] [PubMed] [Google Scholar]
- Llinás R., Yarom Y. Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol. 1981 Jun;315:549–567. doi: 10.1113/jphysiol.1981.sp013763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsushita M., Iwahori N. Structural organization of the interpositus and the dentate nuclei. Brain Res. 1971 Dec 10;35(1):17–36. doi: 10.1016/0006-8993(71)90592-0. [DOI] [PubMed] [Google Scholar]
- McCrea R. A., Bishop G. A., Kitai S. T. Morphological and electrophysiological characteristics of projection neurons in the nucleus interpositus of the cat cerebellum. J Comp Neurol. 1978 Sep 15;181(2):397–419. doi: 10.1002/cne.901810210. [DOI] [PubMed] [Google Scholar]
- Rispal-Padel L., Cicirata F., Pons C. Cerebellar nuclear topography of simple and synergistic movements in the alert baboon (Papio papio). Exp Brain Res. 1982;47(3):365–380. doi: 10.1007/BF00239355. [DOI] [PubMed] [Google Scholar]
- Rosén I., Scheid P. Cerebellar surface cooling influencing evoked activity in cortex and in interpositus nucleus. Brain Res. 1972 Oct 27;45(2):580–584. doi: 10.1016/0006-8993(72)90486-6. [DOI] [PubMed] [Google Scholar]
- Toyama K., Tsukahara N., Kosaka K., Matsunami K. Synaptic excitation of red nucleus neurones by fibres from interpositus nucleus. Exp Brain Res. 1970;11(2):187–198. doi: 10.1007/BF00234322. [DOI] [PubMed] [Google Scholar]
- Trott J. R., Armstrong D. M. The cerebellar corticonuclear projection from lobule Vb/c of the cat anterior lobe: a combined electrophysiological and autoradiographic study. I. Projections from the intermediate region. Exp Brain Res. 1987;66(2):318–338. doi: 10.1007/BF00243308. [DOI] [PubMed] [Google Scholar]
- Yu Q. X., Ebner T. J., Bloedel J. R. Electrophysiological study of the corticonuclear projection in the cat cerebellum. Brain Res. 1985 Feb 18;327(1-2):121–134. doi: 10.1016/0006-8993(85)91506-9. [DOI] [PubMed] [Google Scholar]


