Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Feb 1;474(3):367–377. doi: 10.1113/jphysiol.1994.sp020029

Regulation of A-currents by cell-cell interactions and neurotrophic factors in developing chick parasympathetic neurones.

M M Dourado 1, S E Dryer 1
PMCID: PMC1160329  PMID: 7516973

Abstract

1. The developmental regulation of ion channel expression was studied in parasympathetic neurones isolated from the chick ciliary ganglion. Whole-cell patch clamp recordings were made from ciliary ganglion neurones that were removed from the embryo on the ninth embryonic day (E9) and maintained in dissociated cell culture for an additional 4 days. Previous studies have shown that the expression of a transient voltage-activated K+ current (IA) is regulated by unidentified environmental stimuli during these developmental stages. 2. The effect of interactions between neurones and target tissue on the expression of IA was tested by co-culturing ciliary ganglion neurones with chick striated muscle cells. Neurones from the nerve-muscle co-cultures expressed normal amplitudes of IA, but the neurones did not express normal levels of IA when they were plated onto lysed muscle fibres. 3. The effect of interactions between ganglionic neurones and non-neuronal ganglionic cells was tested by culturing ganglia as explants rather than as dissociated cells. Neurones isolated from the explant cultures did not express normal levels of IA. Similarly, when dissociated ganglionic neurones were co-cultured with fibroblasts isolated from embryonic chick skin, they did not express normal amplitudes of IA. 4. Chronic depolarization caused by growing ciliary ganglion neurones in the presence of elevated K+ concentrations did not allow for the normal expression of IA, although it did promote the survival of these neurones in vitro. 5. Addition of 40 ng ml-1 of recombinant human ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF) to the cell culture medium had no effect on IA expression in developing chick ciliary ganglion neurones. However, 40 ng ml-1 of acidic fibroblast growth factor (aFGF) stimulated the expression of IA. All trophic factors promoted the growth and survival of ciliary ganglion neurones in vitro. 6. Dissociated ciliary ganglion neurones were maintained in a culture medium containing an aqueous extract of the whole brain. Neurones developing under these conditions expressed normal levels of IA. The stimulatory activity of the brain extract was destroyed by heating. 7. The expression of IA in chick ciliary ganglion neurones developing in vitro can be regulated by soluble growth factors and by interactions with certain other cell types. Similar interactions may regulate the expression of IA in ciliary ganglion neurones developing in situ.

Full text

PDF
367

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arenella L. S., Oliva J. M., Jacob M. H. Reduced levels of acetylcholine receptor expression in chick ciliary ganglion neurons developing in the absence of innervation. J Neurosci. 1993 Oct;13(10):4525–4537. doi: 10.1523/JNEUROSCI.13-10-04525.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barbin G., Manthorpe M., Varon S. Purification of the chick eye ciliary neuronotrophic factor. J Neurochem. 1984 Nov;43(5):1468–1478. doi: 10.1111/j.1471-4159.1984.tb05410.x. [DOI] [PubMed] [Google Scholar]
  3. Brosius D. C., Hackett J. T., Tuttle J. B. Presynaptic calcium currents evoking quantal transmission from avian ciliary ganglion neurons. Synapse. 1990;5(4):313–323. doi: 10.1002/syn.890050408. [DOI] [PubMed] [Google Scholar]
  4. Chalazonitis A., Fischbach G. D. Elevated potassium induces morphological differentiation of dorsal root ganglionic neurons in dissociated cell culture. Dev Biol. 1980 Jul;78(1):173–183. doi: 10.1016/0012-1606(80)90327-9. [DOI] [PubMed] [Google Scholar]
  5. Collins F., Schmidt M. F., Guthrie P. B., Kater S. B. Sustained increase in intracellular calcium promotes neuronal survival. J Neurosci. 1991 Aug;11(8):2582–2587. doi: 10.1523/JNEUROSCI.11-08-02582.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coulombe J. N., Nishi R. Stimulation of somatostatin expression in developing ciliary ganglion neurons by cells of the choroid layer. J Neurosci. 1991 Feb;11(2):553–562. doi: 10.1523/JNEUROSCI.11-02-00553.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crean G., Pilar G., Tuttle J. B., Vaca K. Enhanced chemosensitivity of chick parasympathetic neurones in co-culture with myotubes. J Physiol. 1982 Oct;331:87–104. doi: 10.1113/jphysiol.1982.sp014366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Creedon D. J., Tuttle J. B. Soluble and membrane-bound factors together account for target dependence of cultured parasympathetic neurons. Brain Res Dev Brain Res. 1990 Nov 1;56(2):281–289. doi: 10.1016/0165-3806(90)90094-f. [DOI] [PubMed] [Google Scholar]
  9. Dourado M. M., Dryer S. E. Changes in the electrical properties of chick ciliary ganglion neurones during embryonic development. J Physiol. 1992 Apr;449:411–428. doi: 10.1113/jphysiol.1992.sp019093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dryer S. E., Dourado M. M., Wisgirda M. E. Characteristics of multiple Ca(2+)-activated K+ channels in acutely dissociated chick ciliary-ganglion neurones. J Physiol. 1991 Nov;443:601–627. doi: 10.1113/jphysiol.1991.sp018854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eckenstein F. P., Esch F., Holbert T., Blacher R. W., Nishi R. Purification and characterization of a trophic factor for embryonic peripheral neurons: comparison with fibroblast growth factors. Neuron. 1990 Apr;4(4):623–631. doi: 10.1016/0896-6273(90)90120-5. [DOI] [PubMed] [Google Scholar]
  12. Eckenstein F. P., Shipley G. D., Nishi R. Acidic and basic fibroblast growth factors in the nervous system: distribution and differential alteration of levels after injury of central versus peripheral nerve. J Neurosci. 1991 Feb;11(2):412–419. doi: 10.1523/JNEUROSCI.11-02-00412.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Engisch K. L., Fischbach G. D. The development of ACH- and GABA-activated currents in normal and target-deprived embryonic chick ciliary ganglia. Dev Biol. 1990 Jun;139(2):417–426. doi: 10.1016/0012-1606(90)90310-f. [DOI] [PubMed] [Google Scholar]
  14. Engisch K. L., Fischbach G. D. The development of ACh- and GABA-activated currents in embryonic chick ciliary ganglion neurons in the absence of innervation in vivo. J Neurosci. 1992 Mar;12(3):1115–1125. doi: 10.1523/JNEUROSCI.12-03-01115.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Furber S., Oppenheim R. W., Prevette D. Naturally-occurring neuron death in the ciliary ganglion of the chick embryo following removal of preganglionic input: evidence for the role of afferents in ganglion cell survival. J Neurosci. 1987 Jun;7(6):1816–1832. doi: 10.1523/JNEUROSCI.07-06-01816.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hendry I. A., Belford D. A. Lack of retrograde axonal transport of the heparin-binding growth factors by chick ciliary neurones. Int J Dev Neurosci. 1991;9(3):243–250. doi: 10.1016/0736-5748(91)90044-m. [DOI] [PubMed] [Google Scholar]
  17. Hill C. E., Belford D. A., Godovac-Zimmermann J., Hendry I. A. Class 1 heparin binding growth factor promotes the differentiation but not the survival of ciliary neurones in vivo. Brain Res Dev Brain Res. 1991 Nov 19;63(1-2):13–19. doi: 10.1016/0165-3806(91)90062-n. [DOI] [PubMed] [Google Scholar]
  18. Landmesser L., Pilar G. Synapse formation during embryogenesis on ganglion cells lacking a periphery. J Physiol. 1974 Sep;241(3):715–736. doi: 10.1113/jphysiol.1974.sp010680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Landmesser L., Pilar G. Synaptic transmission and cell death during normal ganglionic development. J Physiol. 1974 Sep;241(3):737–749. doi: 10.1113/jphysiol.1974.sp010681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Landmesser L., Pilar G. The onset and development of transmission in the chick ciliary ganglion. J Physiol. 1972 May;222(3):691–713. doi: 10.1113/jphysiol.1972.sp009822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leung D. W., Parent A. S., Cachianes G., Esch F., Coulombe J. N., Nikolics K., Eckenstein F. P., Nishi R. Cloning, expression during development, and evidence for release of a trophic factor for ciliary ganglion neurons. Neuron. 1992 Jun;8(6):1045–1053. doi: 10.1016/0896-6273(92)90126-x. [DOI] [PubMed] [Google Scholar]
  22. Lin L. F., Mismer D., Lile J. D., Armes L. G., Butler E. T., 3rd, Vannice J. L., Collins F. Purification, cloning, and expression of ciliary neurotrophic factor (CNTF). Science. 1989 Nov 24;246(4933):1023–1025. doi: 10.1126/science.2587985. [DOI] [PubMed] [Google Scholar]
  23. Mandelzys A., Cooper E. Effects of ganglionic satellite cells and NGF on the expression of nicotinic acetylcholine currents by rat sensory neurons. J Neurophysiol. 1992 May;67(5):1213–1221. doi: 10.1152/jn.1992.67.5.1213. [DOI] [PubMed] [Google Scholar]
  24. Needels D. L., Nieto-Sampedro M., Cotman C. W. Long-term support by injured brain extract of a subpopulation of ciliary ganglion neurons purified by differential adhesion. Neurochem Res. 1987 Oct;12(10):901–907. doi: 10.1007/BF00966312. [DOI] [PubMed] [Google Scholar]
  25. Nishi R., Berg D. K. Dissociated ciliary ganglion neurons in vitro: survival and synapse formation. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5171–5175. doi: 10.1073/pnas.74.11.5171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nishi R., Berg D. K. Effects of high K+ concentrations on the growth and development of ciliary ganglion neurons in cell culture. Dev Biol. 1981 Oct 30;87(2):301–307. doi: 10.1016/0012-1606(81)90153-6. [DOI] [PubMed] [Google Scholar]
  27. Nishi R., Berg D. K. Survival and development of ciliary ganglion neurones grown alone in cell culture. Nature. 1979 Jan 18;277(5693):232–234. doi: 10.1038/277232a0. [DOI] [PubMed] [Google Scholar]
  28. Nishi R., Berg D. K. Two components from eye tissue that differentially stimulate the growth and development of ciliary ganglion neurons in cell culture. J Neurosci. 1981 May;1(5):505–513. doi: 10.1523/JNEUROSCI.01-05-00505.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Oppenheim R. W. Cell death during development of the nervous system. Annu Rev Neurosci. 1991;14:453–501. doi: 10.1146/annurev.ne.14.030191.002321. [DOI] [PubMed] [Google Scholar]
  30. Ribera A. B., Spitzer N. C. Developmental regulation of potassium channels and the impact on neuronal differentiation. Ion Channels. 1992;3:1–38. doi: 10.1007/978-1-4615-3328-3_1. [DOI] [PubMed] [Google Scholar]
  31. Schubert D., Ling N., Baird A. Multiple influences of a heparin-binding growth factor on neuronal development. J Cell Biol. 1987 Mar;104(3):635–643. doi: 10.1083/jcb.104.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smith M. A., Margiotta J. F., Berg D. K. Differential regulation of acetylcholine sensitivity and alpha-bungarotoxin-binding sites on ciliary ganglion neurons in cell culture. J Neurosci. 1983 Nov;3(11):2395–2402. doi: 10.1523/JNEUROSCI.03-11-02395.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Spitzer N. C. A developmental handshake: neuronal control of ionic currents and their control of neuronal differentiation. J Neurobiol. 1991 Oct;22(7):659–673. doi: 10.1002/neu.480220702. [DOI] [PubMed] [Google Scholar]
  34. Tuttle J. B. Interaction with membrane remnants of target myotubes maintains transmitter sensitivity of cultured neurons. Science. 1983 May 27;220(4600):977–979. doi: 10.1126/science.6133352. [DOI] [PubMed] [Google Scholar]
  35. Walicke P. A., Campenot R. B., Patterson P. H. Determination of transmitter function by neuronal activity. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5767–5771. doi: 10.1073/pnas.74.12.5767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wisgirda M. E., Dryer S. E. Characteristics of multiple voltage-activated K+ currents in acutely dissociated chick ciliary ganglion neurones. J Physiol. 1993 Oct;470:171–189. doi: 10.1113/jphysiol.1993.sp019853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wisgirda M. E., Dryer S. E. Divalent cations selectively alter the voltage dependence of inactivation of A-currents in chick autonomic neurons. Pflugers Arch. 1993 Jun;423(5-6):418–426. doi: 10.1007/BF00374936. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES