Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1993 Dec;472:45–53. doi: 10.1113/jphysiol.1993.sp019935

Turnover rate of the cardiac Na(+)-Ca2+ exchanger in guinea-pig ventricular myocytes.

T Powell 1, A Noma 1, T Shioya 1, R Z Kozlowski 1
PMCID: PMC1160475  PMID: 8145153

Abstract

1. Single guinea-pig ventricular myocytes were voltage clamped using the whole-cell configuration of the patch-clamp technique and membrane current generated by the Na(+)-Ca2+ exchange mechanism recorded. 2. Rapid increases in cytosolic free calcium ([Ca2+]i) evoked by flash photolysis of either nitr-5 or DM-nitrophen resulted in current relaxations, arising from a redistribution of exchanger carrier conformations induced by the changes in [Ca2+]i. 3. Relaxation time constants were temperature dependent with a temperature coefficient over a 10 degrees C range (Q10) of approximately 3 and also voltage dependent, decreasing on hyperpolarization for membrane potentials in the range +40 to -80 mV. 4. The experimental results are consistent with consecutive exchange models having electrogenic Na+ translocation steps, together with a site density and turnover rate similar to that for the Na(+)-K+ pump.

Full text

PDF
45

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Collins A., Somlyo A. V., Hilgemann D. W. The giant cardiac membrane patch method: stimulation of outward Na(+)-Ca2+ exchange current by MgATP. J Physiol. 1992 Aug;454:27–57. doi: 10.1113/jphysiol.1992.sp019253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gurney A. M., Charnet P., Pye J. M., Nargeot J. Augmentation of cardiac calcium current by flash photolysis of intracellular caged-Ca2+ molecules. Nature. 1989 Sep 7;341(6237):65–68. doi: 10.1038/341065a0. [DOI] [PubMed] [Google Scholar]
  3. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  4. Hilgemann D. W. Giant excised cardiac sarcolemmal membrane patches: sodium and sodium-calcium exchange currents. Pflugers Arch. 1989 Nov;415(2):247–249. doi: 10.1007/BF00370601. [DOI] [PubMed] [Google Scholar]
  5. Hilgemann D. W., Nicoll D. A., Philipson K. D. Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger. Nature. 1991 Aug 22;352(6337):715–718. doi: 10.1038/352715a0. [DOI] [PubMed] [Google Scholar]
  6. Hilgemann D. W. Regulation and deregulation of cardiac Na(+)-Ca2+ exchange in giant excised sarcolemmal membrane patches. Nature. 1990 Mar 15;344(6263):242–245. doi: 10.1038/344242a0. [DOI] [PubMed] [Google Scholar]
  7. Jørgensen P. L. Sodium and potassium ion pump in kidney tubules. Physiol Rev. 1980 Jul;60(3):864–917. doi: 10.1152/physrev.1980.60.3.864. [DOI] [PubMed] [Google Scholar]
  8. Kaplan J. H. Photochemical manipulation of divalent cation levels. Annu Rev Physiol. 1990;52:897–914. doi: 10.1146/annurev.ph.52.030190.004225. [DOI] [PubMed] [Google Scholar]
  9. Kimura J., Miyamae S., Noma A. Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig. J Physiol. 1987 Mar;384:199–222. doi: 10.1113/jphysiol.1987.sp016450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kozlowski R. Z., Twist V. W., Brown A. M., Powell T. Flash photolysis of intracellular caged GTP gamma S increases L-type Ca2+ currents in cardiac myocytes. Am J Physiol. 1991 Nov;261(5 Pt 2):H1665–H1670. doi: 10.1152/ajpheart.1991.261.5.H1665. [DOI] [PubMed] [Google Scholar]
  11. Matsuoka S., Hilgemann D. W. Steady-state and dynamic properties of cardiac sodium-calcium exchange. Ion and voltage dependencies of the transport cycle. J Gen Physiol. 1992 Dec;100(6):963–1001. doi: 10.1085/jgp.100.6.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nicoll D. A., Longoni S., Philipson K. D. Molecular cloning and functional expression of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. Science. 1990 Oct 26;250(4980):562–565. doi: 10.1126/science.1700476. [DOI] [PubMed] [Google Scholar]
  13. Niggli E., Lederer W. J. Molecular operations of the sodium-calcium exchanger revealed by conformation currents. Nature. 1991 Feb 14;349(6310):621–624. doi: 10.1038/349621a0. [DOI] [PubMed] [Google Scholar]
  14. Noma A., Shioya T., Paver L. F., Twist V. W., Powell T. Cytosolic free Ca2+ during operation of sodium-calcium exchange in guinea-pig heart cells. J Physiol. 1991 Oct;442:257–276. doi: 10.1113/jphysiol.1991.sp018792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Powell T., Terrar D. A., Twist V. W. Electrical properties of individual cells isolated from adult rat ventricular myocardium. J Physiol. 1980 May;302:131–153. doi: 10.1113/jphysiol.1980.sp013234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Severs N. J., Slade A. M., Powell T., Twist V. W., Warren R. L. Correlation of ultrastructure and function in calcium-tolerant myocytes isolated from the adult rat heart. J Ultrastruct Res. 1982 Nov;81(2):222–239. doi: 10.1016/s0022-5320(82)90078-8. [DOI] [PubMed] [Google Scholar]
  17. Zucker R. S. The calcium concentration clamp: spikes and reversible pulses using the photolabile chelator DM-nitrophen. Cell Calcium. 1993 Feb;14(2):87–100. doi: 10.1016/0143-4160(93)90079-l. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES