Abstract
1. Female adult rats were subjected to sympathetic denervation of the parotid glands by bilateral removal of the superior cervical ganglion 10-12 days before acute experiments. The sympathectomy was in some of the experimental groups combined with either bilateral adrenal medullectomy, treatment with the sensory neurotoxin capsaicin or parasympathetic denervation of the gland by cutting the auriculotemporal nerve. 2. Food but not water was withheld for 29-32 h before acute experiments. All animals were given an intraperitoneal injection of phentolamine (2 mg kg-1) and propranolol (1 mg kg-1) and, when appropriate, also atropine (1 mg kg-1). Then the experimental animals were fed their ordinary food of hard chow for 60-90 min. Thereafter, these animals and their non-fed controls were killed, and the parotid glands were removed and used for either morphometric assessment or measurement of amylase activity. 3. In the atropinized rats subjected to sympathectomy alone, eating reduced the numerical density of acinar secretory granules by 50% and the total activity of amylase by 55%; the corresponding figures were, when sympathectomy was combined with adrenal medullectomy, 51 and 63%. Also, in atropinized animals subjected to sympathectomy and capsaicin pretreatment, eating reduced the numerical density of acinar granules and the total amylase activity, in this case by 45 and 35%, respectively. 4. In the atropinized rats subjected to sympathectomy and parasympathectomy, eating caused no change in the numerical density of acinar granules but reduced the total amylase activity by 35%. 5. In the non-atropinized rats subjected to sympathectomy alone, eating reduced the numerical density of acinar granules by 22%, while there was no change in the total amylase activity. 6. In conclusion, eating evoked a reflex activation of the sympathectomized parotid gland that engaged non-adrenergic non-cholinergic receptors of the acinar cells. The present results give weight to a physiological role for non-adrenergic non-cholinergic parasympathetic mechanisms in salivary secretion under reflex conditions.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alm P., Ekström J. Cholinergic nerves of unknown origin in the parotid glands of rats. Arch Oral Biol. 1976;21(7):417–421. doi: 10.1016/0003-9969(76)90005-4. [DOI] [PubMed] [Google Scholar]
- Asking B., Gjörstrup P. Synthesis and secretion of amylase in the rat parotid gland following autonomic nerve stimulation in vivo. Acta Physiol Scand. 1987 Jul;130(3):439–445. doi: 10.1111/j.1748-1716.1987.tb08160.x. [DOI] [PubMed] [Google Scholar]
- Asking B., Proctor G. B. Parasympathetic activation of amylase secretion in the intact and sympathetically denervated rat parotid gland. Q J Exp Physiol. 1989 Jan;74(1):45–52. doi: 10.1113/expphysiol.1989.sp003238. [DOI] [PubMed] [Google Scholar]
- Carlsö B., Danielsson A., Helander H. F. Effects of starvation on amylase storage in mouse pancreas and parotid gland. A biochemical and morphometric study. Acta Hepatogastroenterol (Stuttg) 1974 Feb;21(1):48–57. [PubMed] [Google Scholar]
- Ekström J., Brodin E., Ekman R., Håkanson R., Månsson B., Tobin G. Depletion of neuropeptides in rat parotid glands and declining atropine-resistant salivary secretion upon continuous parasympathetic nerve stimulation. Regul Pept. 1985 Aug;11(4):353–359. doi: 10.1016/0167-0115(85)90207-1. [DOI] [PubMed] [Google Scholar]
- Ekström J., Ekman R., Håkanson R., Luts A., Sundler F., Tobin G. Effects of capsaicin pretreatment on neuropeptides and salivary secretion of rat parotid glands. Br J Pharmacol. 1989 Aug;97(4):1031–1038. doi: 10.1111/j.1476-5381.1989.tb12559.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ekström J., Ekman R., Håkanson R., Sjögren S., Sundler F. Calcitonin gene-related peptide in rat salivary glands: neuronal localization, depletion upon nerve stimulation, and effects on salivation in relation to substance P. Neuroscience. 1988 Sep;26(3):933–949. doi: 10.1016/0306-4522(88)90110-8. [DOI] [PubMed] [Google Scholar]
- Ekström J., Garrett J. R., Månsson B., Tobin G. The effects of atropine and chronic sympathectomy on maximal parasympathetic stimulation of parotid saliva in rats. J Physiol. 1988 Sep;403:105–116. doi: 10.1113/jphysiol.1988.sp017241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ekström J., Månsson B., Tobin G. Effects of atropine or high frequency burst excitation on the composition of parasympathetic rat parotid saliva. Acta Physiol Scand. 1984 Nov;122(3):409–414. doi: 10.1111/j.1748-1716.1984.tb07526.x. [DOI] [PubMed] [Google Scholar]
- Ekström J., Månsson B., Tobin G., Garrett J. R., Thulin A. Atropine-resistant secretion of parotid saliva on stimulation of the auriculo-temporal nerve. Acta Physiol Scand. 1983 Dec;119(4):445–449. doi: 10.1111/j.1748-1716.1983.tb07360.x. [DOI] [PubMed] [Google Scholar]
- Ekström J., Månsson B., Tobin G. Vasoactive intestinal peptide evoked secretion of fluid and protein from rat salivary glands and the development of supersensitivity. Acta Physiol Scand. 1983;119(2):169–175. doi: 10.1111/j.1748-1716.1983.tb07322.x. [DOI] [PubMed] [Google Scholar]
- Ekström J., Wahlestedt C. Supersensitivity to substance P and physalaemin in rat salivary glands after denervation or decentralization. Acta Physiol Scand. 1982 Aug;115(4):437–446. doi: 10.1111/j.1748-1716.1982.tb07102.x. [DOI] [PubMed] [Google Scholar]
- Garrett J. R., Harrop T. J., Thulin A. Electron microscopy of watery vacuole formation in rat parotid acinar cells during reflex stimulation. Arch Oral Biol. 1987;32(9):611–617. doi: 10.1016/0003-9969(87)90033-1. [DOI] [PubMed] [Google Scholar]
- Garrett J. R., Harrop T. J., Thulin A. Secretion of parotid acinar granules in rats during reflex stimulation after chronic sympathectomy. Q J Exp Physiol. 1985 Jul;70(3):461–467. doi: 10.1113/expphysiol.1985.sp002929. [DOI] [PubMed] [Google Scholar]
- Garrett J. R., Thulin A. Changes in parotid acinar cells accompanying salivary secretion in rats on sympathetic or parasympathetic nerve stimulation. Cell Tissue Res. 1975 Jun 9;159(2):179–193. doi: 10.1007/BF00219154. [DOI] [PubMed] [Google Scholar]
- Harrop T. J., Garrett J. R. Effects of preganglionic sympathectomy on secretory changes in parotid acinar cells of rats in eating. Cell Tissue Res. 1974;154(2):135–150. doi: 10.1007/BF00223160. [DOI] [PubMed] [Google Scholar]
- Helander H. F. Quantitative ultrastructural studies on rat gastric zymogen cells under different physiological and experimental conditions. Cell Tissue Res. 1978 May 29;189(2):287–303. doi: 10.1007/BF00209278. [DOI] [PubMed] [Google Scholar]
- Hodgson C., Speirs R. L. The effect of preganglionic cervical sympathectomy on the amylase content of parotid glands in fasted and fed rats. J Physiol. 1974 Mar;237(2):56P–57P. [PubMed] [Google Scholar]
- Hägele E. O., Schaich E., Rauscher E., Lehmann P., Bürk H., Wahlefeld A. W. Mechanism of action of human pancreatic and salivary alpha-amylase on alpha-4-nitrophenyl maltoheptaoside substrate. Clin Chem. 1982 Nov;28(11):2201–2205. [PubMed] [Google Scholar]
- Kelly R. B. Pathways of protein secretion in eukaryotes. Science. 1985 Oct 4;230(4721):25–32. doi: 10.1126/science.2994224. [DOI] [PubMed] [Google Scholar]
- Langley J. N. On the Physiology of the Salivary Secretion: Part I. The Influence of the Chorda Tympani and Sympathetic Nerves upon the Secretion of the Sub-maxillary Gland of the Cat. J Physiol. 1878 Mar 12;1(1):96–103. doi: 10.1113/jphysiol.1878.sp000008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin D. S., Segura T., Haywood J. R. Cardiovascular responses to bicuculline in the paraventricular nucleus of the rat. Hypertension. 1991 Jul;18(1):48–55. doi: 10.1161/01.hyp.18.1.48. [DOI] [PubMed] [Google Scholar]
- Månsson B., Ekström J. On the non-adrenergic, non-cholinergic contribution to the parasympathetic nerve-evoked secretion of parotid saliva in the rat. Acta Physiol Scand. 1991 Feb;141(2):197–205. doi: 10.1111/j.1748-1716.1991.tb09068.x. [DOI] [PubMed] [Google Scholar]
- Reid A. M., Titchen D. A. Atropine-resistant secretory responses of the ovine parotid gland to reflex and direct parasympathetic stimulation. Q J Exp Physiol. 1988 May;73(3):413–424. doi: 10.1113/expphysiol.1988.sp003157. [DOI] [PubMed] [Google Scholar]
- Schneyer C. A., Hall H. D. Function of rat parotid gland after sympathectomy and total postganglionectomy. Am J Physiol. 1966 Oct;211(4):943–949. doi: 10.1152/ajplegacy.1966.211.4.943. [DOI] [PubMed] [Google Scholar]
- Schneyer C. A. Role of sympathetic pathway in secretory activity induced in rat parotid by feeding. Proc Soc Exp Biol Med. 1974 Oct;147(1):314–317. doi: 10.3181/00379727-147-38333. [DOI] [PubMed] [Google Scholar]
- Speirs R. L., Hodgson C. Control of amylase secretion in the rat parotid gland during feeding. Arch Oral Biol. 1976;21(9):539–544. doi: 10.1016/0003-9969(76)90019-4. [DOI] [PubMed] [Google Scholar]
- Thulin A. Motor and secretory effects of nerves on the parotid gland of rat. Acta Physiol Scand. 1976 Apr;96(4):506–511. doi: 10.1111/j.1748-1716.1976.tb10221.x. [DOI] [PubMed] [Google Scholar]
- Tobin G., Ekström J., Bloom S. R., Edwards A. V. Atropine-resistant submandibular responses to stimulation of the parasympathetic innervation in the anaesthetized ferret. J Physiol. 1991 Jun;437:327–339. doi: 10.1113/jphysiol.1991.sp018598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkinson C. W., Shinsako J., Dallman M. F. Return of pituitary-adrenal function after adrenal enucleation or transplantation: diurnal rhythms and responses to ether. Endocrinology. 1981 Jul;109(1):162–169. doi: 10.1210/endo-109-1-162. [DOI] [PubMed] [Google Scholar]

