Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1993 Dec;472:359–371. doi: 10.1113/jphysiol.1993.sp019951

Modulation by histamine of an inwardly rectifying potassium channel in human endothelial cells.

B Nilius 1, G Schwarz 1, G Droogmans 1
PMCID: PMC1160491  PMID: 8145150

Abstract

1. Whole-cell and single-channel currents were recorded together with intracellular Ca2+ in voltage clamped, single endothelial cells isolated from human umbilical vein. 2. The major current component under resting conditions in the whole-cell configuration was a strongly inwardly rectifying potassium current. 3. This current is due to activation of a K+ channel with an inward conductance of 29 +/- 3 pS (n = 7) with symmetrical 140 mM K+ on both sides of the membrane. This channel could be measured both in the cell-attached and in the inside-out configuration. At potentials below -110 mV both whole-cell and averaged single-channel currents showed a fast inactivation. 4. During stimulation of endothelial cells with histamine, whole-cell K+ currents initially increased but then substantially declined, despite the sustained increase in intracellular Ca2+ concentration ([Ca2+]i). 5. The blockade of the inwardly rectifying K+ channel by histamine could not be observed in cell-attached patches if histamine was added to the bath. 6. It is concluded that endothelial cells possess K+ channels that are directly inhibited by agonists, such as histamine. Blocking these channels may depolarize the cell membrane and thereby reduce the driving force for Ca2+ influx.

Full text

PDF
359

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Busse R., Fichtner H., Lückhoff A., Kohlhardt M. Hyperpolarization and increased free calcium in acetylcholine-stimulated endothelial cells. Am J Physiol. 1988 Oct;255(4 Pt 2):H965–H969. doi: 10.1152/ajpheart.1988.255.4.H965. [DOI] [PubMed] [Google Scholar]
  2. Colden-Stanfield M., Cramer E. B., Gallin E. K. Comparison of apical and basal surfaces of confluent endothelial cells: patch-clamp and viral studies. Am J Physiol. 1992 Sep;263(3 Pt 1):C573–C583. doi: 10.1152/ajpcell.1992.263.3.C573. [DOI] [PubMed] [Google Scholar]
  3. Colden-Stanfield M., Schilling W. P., Possani L. D., Kunze D. L. Bradykinin-induced potassium current in cultured bovine aortic endothelial cells. J Membr Biol. 1990 Jul;116(3):227–238. doi: 10.1007/BF01868462. [DOI] [PubMed] [Google Scholar]
  4. Colden-Stanfield M., Schilling W. P., Ritchie A. K., Eskin S. G., Navarro L. T., Kunze D. L. Bradykinin-induced increases in cytosolic calcium and ionic currents in cultured bovine aortic endothelial cells. Circ Res. 1987 Nov;61(5):632–640. doi: 10.1161/01.res.61.5.632. [DOI] [PubMed] [Google Scholar]
  5. Fichtner H., Fröbe U., Busse R., Kohlhardt M. Single nonselective cation channels and Ca2+-activated K+ channels in aortic endothelial cells. J Membr Biol. 1987;98(2):125–133. doi: 10.1007/BF01872125. [DOI] [PubMed] [Google Scholar]
  6. Flavahan N. A., Vanhoutte P. M. G-proteins and endothelial responses. Blood Vessels. 1990;27(2-5):218–229. doi: 10.1159/000158813. [DOI] [PubMed] [Google Scholar]
  7. Groschner K., Graier W. F., Kukovetz W. R. Activation of a small-conductance Ca(2+)-dependent K+ channel contributes to bradykinin-induced stimulation of nitric oxide synthesis in pig aortic endothelial cells. Biochim Biophys Acta. 1992 Oct 27;1137(2):162–170. doi: 10.1016/0167-4889(92)90198-k. [DOI] [PubMed] [Google Scholar]
  8. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  9. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  10. Hoyer J., Popp R., Meyer J., Galla H. J., Gögelein H. Angiotensin II, vasopressin and GTP[gamma-S] inhibit inward-rectifying K+ channels in porcine cerebral capillary endothelial cells. J Membr Biol. 1991 Jul;123(1):55–62. doi: 10.1007/BF01993963. [DOI] [PubMed] [Google Scholar]
  11. Kurtz A., Penner R. Angiotensin II induces oscillations of intracellular calcium and blocks anomalous inward rectifying potassium current in mouse renal juxtaglomerular cells. Proc Natl Acad Sci U S A. 1989 May;86(9):3423–3427. doi: 10.1073/pnas.86.9.3423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lückhoff A., Busse R. Calcium influx into endothelial cells and formation of endothelium-derived relaxing factor is controlled by the membrane potential. Pflugers Arch. 1990 May;416(3):305–311. doi: 10.1007/BF00392067. [DOI] [PubMed] [Google Scholar]
  13. Matsuda H. Effects of external and internal K+ ions on magnesium block of inwardly rectifying K+ channels in guinea-pig heart cells. J Physiol. 1991 Apr;435:83–99. doi: 10.1113/jphysiol.1991.sp018499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Matsuki T., Ohhashi T. Endothelium and mechanical responses of isolated monkey pulmonary veins to histamine. Am J Physiol. 1990 Oct;259(4 Pt 2):H1032–H1037. doi: 10.1152/ajpheart.1990.259.4.H1032. [DOI] [PubMed] [Google Scholar]
  15. Mehrke G., Pohl U., Daut J. Effects of vasoactive agonists on the membrane potential of cultured bovine aortic and guinea-pig coronary endothelium. J Physiol. 1991 Aug;439:277–299. doi: 10.1113/jphysiol.1991.sp018667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mukai M., Kyogoku I., Kuno M. Calcium-dependent inactivation of inwardly rectifying K+ channel in a tumor mast cell line. Am J Physiol. 1992 Jan;262(1 Pt 1):C84–C90. doi: 10.1152/ajpcell.1992.262.1.C84. [DOI] [PubMed] [Google Scholar]
  17. Nilius B. Permeation properties of a non-selective cation channel in human vascular endothelial cells. Pflugers Arch. 1990 Jul;416(5):609–611. doi: 10.1007/BF00382697. [DOI] [PubMed] [Google Scholar]
  18. Nilius B., Riemann D. Ion channels in human endothelial cells. Gen Physiol Biophys. 1990 Apr;9(2):89–111. [PubMed] [Google Scholar]
  19. Revest P. A., Abbott N. J. Membrane ion channels of endothelial cells. Trends Pharmacol Sci. 1992 Nov;13(11):404–407. doi: 10.1016/0165-6147(92)90124-o. [DOI] [PubMed] [Google Scholar]
  20. Rusko J., Tanzi F., van Breemen C., Adams D. J. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block. J Physiol. 1992 Sep;455:601–621. doi: 10.1113/jphysiol.1992.sp019318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sakai T. Acetylcholine induces Ca-dependent K currents in rabbit endothelial cells. Jpn J Pharmacol. 1990 Jun;53(2):235–246. doi: 10.1254/jjp.53.235. [DOI] [PubMed] [Google Scholar]
  22. Sauve R., Parent L., Simoneau C., Roy G. External ATP triggers a biphasic activation process of a calcium-dependent K+ channel in cultured bovine aortic endothelial cells. Pflugers Arch. 1988 Oct;412(5):469–481. doi: 10.1007/BF00582535. [DOI] [PubMed] [Google Scholar]
  23. Schwarz G., Callewaert G., Droogmans G., Nilius B. Shear stress-induced calcium transients in endothelial cells from human umbilical cord veins. J Physiol. 1992 Dec;458:527–538. doi: 10.1113/jphysiol.1992.sp019432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Silver M. R., DeCoursey T. E. Intrinsic gating of inward rectifier in bovine pulmonary artery endothelial cells in the presence or absence of internal Mg2+. J Gen Physiol. 1990 Jul;96(1):109–133. doi: 10.1085/jgp.96.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vaca L., Schilling W. P., Kunze D. L. G-protein-mediated regulation of a Ca(2+)-dependent K+ channel in cultured vascular endothelial cells. Pflugers Arch. 1992 Oct;422(1):66–74. doi: 10.1007/BF00381515. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES