Abstract
1. Extracellular recordings were obtained from 94 warm-sensitive, 6 cold-sensitive and 117 temperature-insensitive neurones in slices of the hypothalamic medial preoptic area of rats, to determine the effect of the GABAA agonist muscimol, the GABAA antagonist bicuculline, the GABAB agonist baclofen and the GABAB antagonist phaclofen on tonic activity and temperature sensitivity. 2. Muscimol and baclofen dose-dependently inhibited the tonic activity of 69% (36/52) and 97% (36/37) of the hypothalamic neurones, respectively, regardless of their type of thermosensitivity. In contrast, the GABAA antagonist bicuculline increased the tonic activity of the majority of neurones (58/83), while the GABAB antagonist phaclofen increased neuronal activity only in the high dose of 100 microM. 3. The temperature sensitivity of hypothalamic neurones was only changed by ligands of GABAB receptors, and this effect was restricted to warm-sensitive neurones. The temperature coefficient (TC) was significantly increased by the GABAB agonist baclofen (delta TC = 0.69 +/- 0.11 imp s-1 degree C-1, P < 0.01, n = 18). In contrast, the GABAB antagonist phaclofen (10 microM) decreased the temperature sensitivity (delta TC = -0.67 +/- 0.09 imp s-1 degree C-1, P < 0.01, n = 10) in doses which did not affect tonic activity. 4. The increase in temperature sensitivity due to the GABAB agonist baclofen was significantly enhanced by co-perfusion of the GABAA antagonist bicuculline, indicating an interaction of GABAA and GABAB receptor-mediated mechanisms with regard to neuronal thermosensitivity. 5. The results suggest that neurones in the medical preoptic area are subject to GABA-mediated tonic inhibition resulting in modulation of tonic activity and temperature sensitivity of warm-sensitive neurones possibly involved in the control of body temperature. The data support the hypothesis that the hypo- or hyperthermic action of an endogenous substance is related to its effect on the thermosensitivity rather than on tonic activity of hypothalamic neurones.
Full text
PDF![217](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a85/1160625/2c4cc0abdabf/jphysiol00396-0213.png)
![218](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a85/1160625/48a8af12ad3c/jphysiol00396-0214.png)
![219](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a85/1160625/ca4138ed9067/jphysiol00396-0215.png)
![220](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a85/1160625/657f23b9476e/jphysiol00396-0216.png)
![221](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a85/1160625/0754da37d7bd/jphysiol00396-0217.png)
![222](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a85/1160625/4eec6fb9106d/jphysiol00396-0218.png)
![223](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a85/1160625/7ccac86a8ed5/jphysiol00396-0219.png)
![224](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a85/1160625/aa7facd95ce3/jphysiol00396-0220.png)
![225](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a85/1160625/d39961896a56/jphysiol00396-0221.png)
![226](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a85/1160625/b3a953a1f8f3/jphysiol00396-0222.png)
![227](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a85/1160625/086fdbcea3ac/jphysiol00396-0223.png)
![228](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a85/1160625/721f4fa84fdc/jphysiol00396-0224.png)
![229](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a85/1160625/9640ac3603e4/jphysiol00396-0225.png)
![230](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a85/1160625/f17b0eb469fc/jphysiol00396-0226.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blatteis C. M. Hypothalamic substances in the control of body temperature: general characteristics. Fed Proc. 1981 Nov;40(13):2735–2740. [PubMed] [Google Scholar]
- Bligh J. Amino acids as central synaptic transmitters or modulators in mammalian thermoregulation. Fed Proc. 1981 Nov;40(13):2746–2749. [PubMed] [Google Scholar]
- Boulant J. A., Dean J. B. Temperature receptors in the central nervous system. Annu Rev Physiol. 1986;48:639–654. doi: 10.1146/annurev.ph.48.030186.003231. [DOI] [PubMed] [Google Scholar]
- Bowery N. G. GABAB receptor pharmacology. Annu Rev Pharmacol Toxicol. 1993;33:109–147. doi: 10.1146/annurev.pa.33.040193.000545. [DOI] [PubMed] [Google Scholar]
- Cabanac M., Stolwijk J. A., Hardy J. D. Effect of temperature and pyrogens on single-unit activity in the rabbit's brain stem. J Appl Physiol. 1968 May;24(5):645–652. doi: 10.1152/jappl.1968.24.5.645. [DOI] [PubMed] [Google Scholar]
- Clark W. G., Lipton J. M. Changes in body temperature after administration of amino acids, peptides, dopamine, neuroleptics and related agents: II. Neurosci Biobehav Rev. 1985 Summer;9(2):299–371. doi: 10.1016/0149-7634(85)90052-1. [DOI] [PubMed] [Google Scholar]
- Connor J. A., Stevens C. F. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J Physiol. 1971 Feb;213(1):31–53. doi: 10.1113/jphysiol.1971.sp009366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crunelli V., Leresche N. A role for GABAB receptors in excitation and inhibition of thalamocortical cells. Trends Neurosci. 1991 Jan;14(1):16–21. doi: 10.1016/0166-2236(91)90178-w. [DOI] [PubMed] [Google Scholar]
- Curras M. C., Kelso S. R., Boulant J. A. Intracellular analysis of inherent and synaptic activity in hypothalamic thermosensitive neurones in the rat. J Physiol. 1991;440:257–271. doi: 10.1113/jphysiol.1991.sp018707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Decavel C., Van den Pol A. N. GABA: a dominant neurotransmitter in the hypothalamus. J Comp Neurol. 1990 Dec 22;302(4):1019–1037. doi: 10.1002/cne.903020423. [DOI] [PubMed] [Google Scholar]
- Eisenman J. S. Pyrogen-induced changes in the thermosensitivity of septal and preoptic neurons. Am J Physiol. 1969 Feb;216(2):330–334. doi: 10.1152/ajplegacy.1969.216.2.330. [DOI] [PubMed] [Google Scholar]
- Gehlert D. R., Yamamura H. I., Wamsley J. K. gamma-Aminobutyric acidB receptors in the rat brain: quantitative autoradiographic localization using [3H](-)-baclofen. Neurosci Lett. 1985 May 14;56(2):183–188. doi: 10.1016/0304-3940(85)90126-0. [DOI] [PubMed] [Google Scholar]
- Gray J. A., Goodwin G. M., Heal D. J., Green A. R. Hypothermia induced by baclofen, a possible index of GABAB receptor function in mice, is enhanced by antidepressant drugs and ECS. Br J Pharmacol. 1987 Dec;92(4):863–870. doi: 10.1111/j.1476-5381.1987.tb11392.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman N. W., Wuarin J. P., Dudek F. E. Whole-cell recordings of spontaneous synaptic currents in medial preoptic neurons from rat hypothalamic slices: mediation by amino acid neurotransmitters. Brain Res. 1994 Oct 17;660(2):349–352. doi: 10.1016/0006-8993(94)91312-9. [DOI] [PubMed] [Google Scholar]
- Hori T. An update on thermosensitive neurons in the brain: from cellular biology to thermal and non-thermal homeostatic functions. Jpn J Physiol. 1991;41(1):1–22. doi: 10.2170/jjphysiol.41.1. [DOI] [PubMed] [Google Scholar]
- Hori T., Shibata M., Kiyohara T., Nakashima T., Asami A. Responses of anterior hypothalamic-preoptic thermosensitive neurons to locally applied capsaicin. Neuropharmacology. 1988 Feb;27(2):135–142. doi: 10.1016/0028-3908(88)90162-1. [DOI] [PubMed] [Google Scholar]
- Horton R. W., LeFeuvre R. A., Rothwell N. J., Stock M. J. Opposing effects of activation of central GABAA and GABAB receptors on brown fat thermogenesis in the rat. Neuropharmacology. 1988 Apr;27(4):363–366. doi: 10.1016/0028-3908(88)90144-x. [DOI] [PubMed] [Google Scholar]
- Jackson H. C., Nutt D. J. Inhibition of baclofen-induced hypothermia in mice by the novel GABAB antagonist CGP 35348. Neuropharmacology. 1991 May;30(5):535–538. doi: 10.1016/0028-3908(91)90018-7. [DOI] [PubMed] [Google Scholar]
- Janský L., Riedel W., Simon E., Simon-Oppermann C., Vybíral S. Effect of bombesin on thermoregulation of the rabbit. Pflugers Arch. 1987 Jul;409(3):318–322. doi: 10.1007/BF00583483. [DOI] [PubMed] [Google Scholar]
- Jarry H., Perschl A., Wuttke W. Further evidence that preoptic anterior hypothalamic GABAergic neurons are part of the GnRH pulse and surge generator. Acta Endocrinol (Copenh) 1988 Aug;118(4):573–579. doi: 10.1530/acta.0.1180573. [DOI] [PubMed] [Google Scholar]
- Kerr D. I., Ong J., Prager R. H., Gynther B. D., Curtis D. R. Phaclofen: a peripheral and central baclofen antagonist. Brain Res. 1987 Mar 3;405(1):150–154. doi: 10.1016/0006-8993(87)90999-1. [DOI] [PubMed] [Google Scholar]
- Matsushima T., Tegnér J., Hill R. H., Grillner S. GABAB receptor activation causes a depression of low- and high-voltage-activated Ca2+ currents, postinhibitory rebound, and postspike afterhyperpolarization in lamprey neurons. J Neurophysiol. 1993 Dec;70(6):2606–2619. doi: 10.1152/jn.1993.70.6.2606. [DOI] [PubMed] [Google Scholar]
- Nakashima T., Hori T., Kuriyama K., Matsuda T. Effects of interferon-alpha on the activity of preoptic thermosensitive neurons in tissue slices. Brain Res. 1988 Jun 28;454(1-2):361–367. doi: 10.1016/0006-8993(88)90838-4. [DOI] [PubMed] [Google Scholar]
- Newberry N. R., Nicoll R. A. Comparison of the action of baclofen with gamma-aminobutyric acid on rat hippocampal pyramidal cells in vitro. J Physiol. 1985 Mar;360:161–185. doi: 10.1113/jphysiol.1985.sp015610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okamura H., Abitbol M., Julien J. F., Dumas S., Bérod A., Geffard M., Kitahama K., Bobillier P., Mallet J., Wiklund L. Neurons containing messenger RNA encoding glutamate decarboxylase in rat hypothalamus demonstrated by in situ hybridization, with special emphasis on cell groups in medial preoptic area, anterior hypothalamic area and dorsomedial hypothalamic nucleus. Neuroscience. 1990;39(3):675–699. doi: 10.1016/0306-4522(90)90252-y. [DOI] [PubMed] [Google Scholar]
- Pahapill P. A., Schlichter L. C. Modulation of potassium channels in human T lymphocytes: effects of temperature. J Physiol. 1990 Mar;422:103–126. doi: 10.1113/jphysiol.1990.sp017975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palacios J. M., Wamsley J. K., Kuhar M. J. High affinity GABA receptors-autoradiographic localization. Brain Res. 1981 Oct 19;222(2):285–307. doi: 10.1016/0006-8993(81)91034-9. [DOI] [PubMed] [Google Scholar]
- Pierau F. R., Klee M. R., Klussmann F. W. Effect of temperature on postsynaptic potentials of cat spinal motoneurones. Brain Res. 1976 Sep 10;114(1):21–34. doi: 10.1016/0006-8993(76)91004-0. [DOI] [PubMed] [Google Scholar]
- Saint D. A., Thomas T., Gage P. W. GABAB agonists modulate a transient potassium current in cultured mammalian hippocampal neurons. Neurosci Lett. 1990 Oct 2;118(1):9–13. doi: 10.1016/0304-3940(90)90236-3. [DOI] [PubMed] [Google Scholar]
- Sancibrian M., Serrano J. S., Miñano F. J. Opioid and prostaglandin mechanisms involved in the effects of GABAergic drugs on body temperature. Gen Pharmacol. 1991;22(2):259–262. doi: 10.1016/0306-3623(91)90443-a. [DOI] [PubMed] [Google Scholar]
- Schmid H. A., Jansky L., Pierau F. K. Temperature sensitivity of neurons in slices of the rat PO/AH area: effect of bombesin and substance P. Am J Physiol. 1993 Feb;264(2 Pt 2):R449–R455. doi: 10.1152/ajpregu.1993.264.2.R449. [DOI] [PubMed] [Google Scholar]
- Schmid H. A., Pierau F. K. Temperature sensitivity of neurons in slices of the rat PO/AH hypothalamic area: effect of calcium. Am J Physiol. 1993 Feb;264(2 Pt 2):R440–R448. doi: 10.1152/ajpregu.1993.264.2.R440. [DOI] [PubMed] [Google Scholar]
- Serrano J. S., Miñano F. J., Sancibrián M., Durán J. A. Involvement of bicuculline-insensitive receptors in the hypothermic effect of GABA and its agonists. Gen Pharmacol. 1985;16(5):505–508. doi: 10.1016/0306-3623(85)90012-6. [DOI] [PubMed] [Google Scholar]
- Simon E., Pierau F. K., Taylor D. C. Central and peripheral thermal control of effectors in homeothermic temperature regulation. Physiol Rev. 1986 Apr;66(2):235–300. doi: 10.1152/physrev.1986.66.2.235. [DOI] [PubMed] [Google Scholar]
- Wu L. G., Saggau P. GABAB receptor-mediated presynaptic inhibition in guinea-pig hippocampus is caused by reduction of presynaptic Ca2+ influx. J Physiol. 1995 Jun 15;485(Pt 3):649–657. doi: 10.1113/jphysiol.1995.sp020759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yakimova K., Ovtcharov R. Central temperature effects of the transmitter amino acids. Acta Physiol Pharmacol Bulg. 1989;15(3):50–54. [PubMed] [Google Scholar]