Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1996 Jul 15;494(Pt 2):511–517. doi: 10.1113/jphysiol.1996.sp021509

Inhibition of nitric oxide synthase does not alter ocular dominance shifts in kitten visual cortex.

S N Reid 1, N W Daw 1, D Czepita 1, H J Flavin 1, W C Sessa 1
PMCID: PMC1160651  PMID: 8842008

Abstract

1. Since nitric oxide has been proposed as a feedback factor in plasticity in the hippocampus, we tested whether it might also be a feedback factor in sensory-dependent plasticity in the cat visual cortex. 2. The effects of monocular deprivation were compared between eight hemispheres with infusion of a nitric oxide synthase inhibitor, and eight control hemispheres with either infusion of the inactive isomer, or no infusion. Although nitric oxide synthase activity was reduced significantly, the ocular dominance histograms were not substantially different in the two groups of animals. We conclude that the feedback factor for sensory-dependent plasticity in the visual cortex is likely to be some factor other than nitric oxide.

Full text

PDF
511

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bannerman D. M., Chapman P. F., Kelly P. A., Butcher S. P., Morris R. G. Inhibition of nitric oxide synthase does not impair spatial learning. J Neurosci. 1994 Dec;14(12):7404–7414. doi: 10.1523/JNEUROSCI.14-12-07404.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bickford M. E., Günlük A. E., Guido W., Sherman S. M. Evidence that cholinergic axons from the parabrachial region of the brainstem are the exclusive source of nitric oxide in the lateral geniculate nucleus of the cat. J Comp Neurol. 1993 Aug 15;334(3):410–430. doi: 10.1002/cne.903340307. [DOI] [PubMed] [Google Scholar]
  3. Bliss T. V., Collingridge G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993 Jan 7;361(6407):31–39. doi: 10.1038/361031a0. [DOI] [PubMed] [Google Scholar]
  4. Bredt D. S., Glatt C. E., Hwang P. M., Fotuhi M., Dawson T. M., Snyder S. H. Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron. 1991 Oct;7(4):615–624. doi: 10.1016/0896-6273(91)90374-9. [DOI] [PubMed] [Google Scholar]
  5. Böhme G. A., Bon C., Stutzmann J. M., Doble A., Blanchard J. C. Possible involvement of nitric oxide in long-term potentiation. Eur J Pharmacol. 1991 Jul 9;199(3):379–381. doi: 10.1016/0014-2999(91)90505-k. [DOI] [PubMed] [Google Scholar]
  6. Cudeiro J., Rivadulla C., Rodriguez R., Martinez-Conde S., Acuña C., Alonso J. M. Modulatory influence of putative inhibitors of nitric oxide synthesis on visual processing in the cat lateral geniculate nucleus. J Neurophysiol. 1994 Jan;71(1):146–149. doi: 10.1152/jn.1994.71.1.146. [DOI] [PubMed] [Google Scholar]
  7. Cudeiro J., Rivadulla C., Rodriguez R., Martinez-Conde S., Martinez L., Grieve K. L., Acu-na C. Further observations on the role of nitric oxide in the feline lateral geniculate nucleus. Eur J Neurosci. 1996 Jan;8(1):144–152. doi: 10.1111/j.1460-9568.1996.tb01175.x. [DOI] [PubMed] [Google Scholar]
  8. Daw N. W., Fox K., Sato H., Czepita D. Critical period for monocular deprivation in the cat visual cortex. J Neurophysiol. 1992 Jan;67(1):197–202. doi: 10.1152/jn.1992.67.1.197. [DOI] [PubMed] [Google Scholar]
  9. Fagiolini M., Pizzorusso T., Berardi N., Domenici L., Maffei L. Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res. 1994 Mar;34(6):709–720. doi: 10.1016/0042-6989(94)90210-0. [DOI] [PubMed] [Google Scholar]
  10. Gally J. A., Montague P. R., Reeke G. N., Jr, Edelman G. M. The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc Natl Acad Sci U S A. 1990 May;87(9):3547–3551. doi: 10.1073/pnas.87.9.3547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haley J. E., Wilcox G. L., Chapman P. F. The role of nitric oxide in hippocampal long-term potentiation. Neuron. 1992 Feb;8(2):211–216. doi: 10.1016/0896-6273(92)90288-o. [DOI] [PubMed] [Google Scholar]
  13. Hope B. T., Michael G. J., Knigge K. M., Vincent S. R. Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2811–2814. doi: 10.1073/pnas.88.7.2811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hubel D. H. Tungsten Microelectrode for Recording from Single Units. Science. 1957 Mar 22;125(3247):549–550. doi: 10.1126/science.125.3247.549. [DOI] [PubMed] [Google Scholar]
  15. Iadecola C. Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends Neurosci. 1993 Jun;16(6):206–214. doi: 10.1016/0166-2236(93)90156-g. [DOI] [PubMed] [Google Scholar]
  16. Juraska J. M., Fifkova E. A Golgi study of the early postnatal development of the visual cortex of the hooded rat. J Comp Neurol. 1979 Jan 15;183(2):247–256. doi: 10.1002/cne.901830203. [DOI] [PubMed] [Google Scholar]
  17. Kasamatsu T., Pettigrew J. D., Ary M. Cortical recovery from effects of monocular deprivation: acceleration with norepinephrine and suppression with 6-hydroxydopamine. J Neurophysiol. 1981 Feb;45(2):254–266. doi: 10.1152/jn.1981.45.2.254. [DOI] [PubMed] [Google Scholar]
  18. Kelly J. P., Van Essen D. C. Cell structure and function in the visual cortex of the cat. J Physiol. 1974 May;238(3):515–547. doi: 10.1113/jphysiol.1974.sp010541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kuchiiwa S., Kuchiiwa T., Mori S., Nakagawa S. NADPH diaphorase neurones are evenly distributed throughout cat neocortex irrespective of functional specialization of each region. Neuroreport. 1994 Aug 15;5(13):1662–1664. doi: 10.1097/00001756-199408150-00030. [DOI] [PubMed] [Google Scholar]
  20. Montague P. R., Gancayco C. D., Winn M. J., Marchase R. B., Friedlander M. J. Role of NO production in NMDA receptor-mediated neurotransmitter release in cerebral cortex. Science. 1994 Feb 18;263(5149):973–977. doi: 10.1126/science.7508638. [DOI] [PubMed] [Google Scholar]
  21. O'Dell T. J., Hawkins R. D., Kandel E. R., Arancio O. Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11285–11289. doi: 10.1073/pnas.88.24.11285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rauschecker J. P., Singer W. Changes in the circuitry of the kitten visual cortex are gated by postsynaptic activity. Nature. 1979 Jul 5;280(5717):58–60. doi: 10.1038/280058a0. [DOI] [PubMed] [Google Scholar]
  23. Ruthazer E. S., Gillespie D. C., Dawson T. M., Snyder S. H., Stryker M. P. Inhibition of nitric oxide synthase does not prevent ocular dominance plasticity in kitten visual cortex. J Physiol. 1996 Jul 15;494(Pt 2):519–527. doi: 10.1113/jphysiol.1996.sp021510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schuman E. M., Madison D. V. A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science. 1991 Dec 6;254(5037):1503–1506. doi: 10.1126/science.1720572. [DOI] [PubMed] [Google Scholar]
  25. Sessa W. C., Harrison J. K., Barber C. M., Zeng D., Durieux M. E., D'Angelo D. D., Lynch K. R., Peach M. J. Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase. J Biol Chem. 1992 Aug 5;267(22):15274–15276. [PubMed] [Google Scholar]
  26. Wiesel T. N., Hubel D. H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol. 1965 Nov;28(6):1029–1040. doi: 10.1152/jn.1965.28.6.1029. [DOI] [PubMed] [Google Scholar]
  27. Wiesel T. N. Postnatal development of the visual cortex and the influence of environment. Nature. 1982 Oct 14;299(5884):583–591. doi: 10.1038/299583a0. [DOI] [PubMed] [Google Scholar]
  28. Yan X. X., Garey L. J., Jen L. S. Development of NADPH-diaphorase activity in the rat neocortex. Brain Res Dev Brain Res. 1994 May 13;79(1):29–38. doi: 10.1016/0165-3806(94)90046-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES