Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1996 Jul 15;494(Pt 2):577–586. doi: 10.1113/jphysiol.1996.sp021515

On muscarinic control of neurogenic mucus secretion in ferret trachea.

S I Ramnarine 1, E B Haddad 1, A M Khawaja 1, J C Mak 1, D F Rogers 1
PMCID: PMC1160657  PMID: 8842014

Abstract

1. Muscarinic receptor subtypes mediating neurogenic mucus secretion in ferret trachea were characterized in vitro and in vivo using 35SO4 as a label for secreted mucus, and the muscarinic receptor antagonists telenzepine for the M1 receptor subtype, methoctramine for the M2 subtype and 4-diphenylacetoxy-N-methylpiperidine methobromide (4-DAMP) for the M3 receptor. We also performed receptor binding and mapping studies. 2. Each muscarinic antagonist displaced [N-methyl-3H]scopolamine binding with high-affinity binding constant (KH) values of 1.9, 2.7 and 5.0 nM for telenzepine, methoctramine and 4-DAMP, respectively. Muscarinic M1 and M3 receptors localized to submucosal glands, whereas M2 receptors did not. 3. In vitro, electrical stimulation (50 V, 10 Hz, 0.5 ms for 5 min) increased 35SO4 output by 160%. Telenzepine did not inhibit the neurogenic secretory response at concentrations two-or twentyfold its KH value, nor did it inhibit secretion induced by acetylcholine (ACh). 4-DAMP inhibited neurogenic secretion by 80 and 95%, respectively, at concentrations two-and twentyfold its KH value, and also inhibited ACh-induced secretion. Methoctramine potentiated neurogenic secretion induced at 2.5 Hz (50 V, 0.5 ms for 5 min) in a dose-related (5.4-100 nM) manner with increases of 33-451% above electrically stimulated values. Methoctramine did not potentiate secretion induced at 10 Hz and did not have any effect on ACh-induced secretion. 4. In vivo, vagal stimulation (10 V, 10 Hz, 2 ms for 8 min) increased output of 35SO4 by approximately 120%. Telenzepine had no significant effect on neurogenic secretion. Methoctramine approximately doubled the stimulated response, whereas 4-DAMP abolished the stimulated secretory response. 5. We conclude that in ferret trachea, cholinergic nerve stimulation increases mucus secretion via muscarinic M3 receptors on the submucosal glands. The magnitude of the secretory response is regulated by neuronal M2 muscarinic receptors. The muscarinic M1 receptors localized to the submucosal glands do not appear to be involved with mucus secretion.

Full text

PDF
577

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barlow R. B., Berry K. J., Glenton P. A., Nilolaou N. M., Soh K. S. A comparison of affinity constants for muscarine-sensitive acetylcholine receptors in guinea-pig atrial pacemaker cells at 29 degrees C and in ileum at 29 degrees C and 37 degrees C. Br J Pharmacol. 1976 Dec;58(4):613–620. doi: 10.1111/j.1476-5381.1976.tb08631.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borson D. B., Charlin M., Gold B. D., Nadel J. A. Neural regulation of 35SO4-macromolecule secretion from tracheal glands of ferrets. J Appl Physiol Respir Environ Exerc Physiol. 1984 Aug;57(2):457–466. doi: 10.1152/jappl.1984.57.2.457. [DOI] [PubMed] [Google Scholar]
  3. Davies J. R., Corbishley C. M., Richardson P. S. The uptake of radiolabelled precursors of mucus glycoconjugates by secretory tissues in the feline trachea. J Physiol. 1990 Jan;420:19–30. doi: 10.1113/jphysiol.1990.sp017899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eglen R. M., Reddy H., Watson N. Selective inactivation of muscarinic receptor subtypes. Int J Biochem. 1994 Dec;26(12):1357–1368. doi: 10.1016/0020-711x(94)90178-3. [DOI] [PubMed] [Google Scholar]
  5. Fung D. C., Beacock D. J., Richardson P. S. Vagal control of mucus glycoconjugate secretion into the feline trachea. J Physiol. 1992;453:435–447. doi: 10.1113/jphysiol.1992.sp019237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gater P. R., Alabaster V. A., Piper I. A study of the muscarinic receptor subtype mediating mucus secretion in the cat trachea in vitro. Pulm Pharmacol. 1989;2(2):87–92. doi: 10.1016/0952-0600(89)90029-x. [DOI] [PubMed] [Google Scholar]
  7. Haddad E. B., Landry Y., Gies J. P. Muscarinic receptor subtypes in guinea pig airways. Am J Physiol. 1991 Oct;261(4 Pt 1):L327–L333. doi: 10.1152/ajplung.1991.261.4.L327. [DOI] [PubMed] [Google Scholar]
  8. Haddad E. B., Mak J. C., Barnes P. J. Characterization of [3H]Ba 679 BR, a slowly dissociating muscarinic antagonist, in human lung: radioligand binding and autoradiographic mapping. Mol Pharmacol. 1994 May;45(5):899–907. [PubMed] [Google Scholar]
  9. Haddad E. B., Mak J. C., Hislop A., Haworth S. G., Barnes P. J. Characterization of muscarinic receptor subtypes in pig airways: radioligand binding and northern blotting studies. Am J Physiol. 1994 Jun;266(6 Pt 1):L642–L648. doi: 10.1152/ajplung.1994.266.6.L642. [DOI] [PubMed] [Google Scholar]
  10. Ishihara H., Shimura S., Satoh M., Masuda T., Nonaka H., Kase H., Sasaki T., Sasaki H., Takishima T., Tamura K. Muscarinic receptor subtypes in feline tracheal submucosal gland secretion. Am J Physiol. 1992 Feb;262(2 Pt 1):L223–L228. doi: 10.1152/ajplung.1992.262.2.L223. [DOI] [PubMed] [Google Scholar]
  11. Lundberg J. M., Saria A. Capsaicin-sensitive vagal neurons involved in control of vascular permeability in rat trachea. Acta Physiol Scand. 1982 Aug;115(4):521–523. doi: 10.1111/j.1748-1716.1982.tb07116.x. [DOI] [PubMed] [Google Scholar]
  12. Mak J. C., Barnes P. J. Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung. Am Rev Respir Dis. 1990 Jun;141(6):1559–1568. doi: 10.1164/ajrccm/141.6.1559. [DOI] [PubMed] [Google Scholar]
  13. Meini S., Mak J. C., Rohde J. A., Rogers D. F. Tachykinin control of ferret airways: mucus secretion, bronchoconstriction and receptor mapping. Neuropeptides. 1993 Feb;24(2):81–89. doi: 10.1016/0143-4179(93)90025-6. [DOI] [PubMed] [Google Scholar]
  14. Melchiorre C., Angeli P., Lambrecht G., Mutschler E., Picchio M. T., Wess J. Antimuscarinic action of methoctramine, a new cardioselective M-2 muscarinic receptor antagonist, alone and in combination with atropine and gallamine. Eur J Pharmacol. 1987 Dec 1;144(2):117–124. doi: 10.1016/0014-2999(87)90509-7. [DOI] [PubMed] [Google Scholar]
  15. Patel H. J., Barnes P. J., Takahashi T., Tadjkarimi S., Yacoub M. H., Belvisi M. G. Evidence for prejunctional muscarinic autoreceptors in human and guinea pig trachea. Am J Respir Crit Care Med. 1995 Sep;152(3):872–878. doi: 10.1164/ajrccm.152.3.7663798. [DOI] [PubMed] [Google Scholar]
  16. Peatfield A. C., Richardson P. S. Evidence for non-cholinergic, non-adrenergic nervous control of mucus secretion into the cat trachea. J Physiol. 1983 Sep;342:335–345. doi: 10.1113/jphysiol.1983.sp014854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ramnarine S. I., Hirayama Y., Barnes P. J., Rogers D. F. 'Sensory-efferent' neural control of mucus secretion: characterization using tachykinin receptor antagonists in ferret trachea in vitro. Br J Pharmacol. 1994 Dec;113(4):1183–1190. doi: 10.1111/j.1476-5381.1994.tb17122.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ramnarine S. I., Rogers D. F. Non-adrenergic, non-cholinergic neural control of mucus secretion in the airways. Pulm Pharmacol. 1994 Feb;7(1):19–33. doi: 10.1006/pulp.1994.1002. [DOI] [PubMed] [Google Scholar]
  19. Schudt C., Boer R., Eltze M., Riedel R., Grundler G., Birdsall N. J. The affinity, selectivity and biological activity of telenzepine enantiomers. Eur J Pharmacol. 1989 Jun 8;165(1):87–96. doi: 10.1016/0014-2999(89)90773-5. [DOI] [PubMed] [Google Scholar]
  20. Shimura S., Sasaki T., Okayama H., Sasaki H., Takishima T. Effect of substance P on mucus secretion of isolated submucosal gland from feline trachea. J Appl Physiol (1985) 1987 Aug;63(2):646–653. doi: 10.1152/jappl.1987.63.2.646. [DOI] [PubMed] [Google Scholar]
  21. Stretton D., Belvisi M. G., Barnes P. J. The effect of sensory nerve depletion on cholinergic neurotransmission in guinea pig airways. J Pharmacol Exp Ther. 1992 Mar;260(3):1073–1080. [PubMed] [Google Scholar]
  22. Yamawaki I., Tamaoki J., Yamauchi F., Konno K. Angiotensin II potentiates neurally mediated contraction of rabbit airway smooth muscle. Respir Physiol. 1992 Aug;89(2):239–247. doi: 10.1016/0034-5687(92)90053-y. [DOI] [PubMed] [Google Scholar]
  23. Yang C. M., Farley J. M., Dwyer T. M. Muscarinic stimulation of submucosal glands in swine trachea. J Appl Physiol (1985) 1988 Jan;64(1):200–209. doi: 10.1152/jappl.1988.64.1.200. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES