Abstract
1. Brainstem slices were taken from mature rats. In the dorsal vagal nucleus (DVNX), membrane potentials (Em) of neurons (DVNs) and glia, as well as extracellular oxygen, K+ and pH (Po2, aKo, pHo), were analysed during metabolic disturbances. 2. Postsynaptic potentials of DVNs, elicited by repetitive electrical stimulation of the solitary tract (TS), led to a secondary glial depolarization of up to 25 mV, a fall in Po2 of up to 150 mmHg, a rise in extracellular aKo of up to 9 mM, and a fall in pHo of about 0.2 pH units. 3. Hypoxic superfusates produced tissue anoxia, leading to an aKo increase of less than 2 mM and a pHo fall of 0.24 +/- 0.04 pH units (mean +/- S.D.). Glucose-free solution evoked, after a delay of more than 8 min, a slow rise in aKo of 1.9 +/- 0.8 mM, accompanied by a mean increase in pHo of 0.24 +/- 0.13 pH units. After pre-incubation in glucose-free solution, anoxia elevated aKo by up to 15 mM, whereas the anoxia-induced pHo decrease was completely blocked. 4. In 45 of 118 DVNs, anoxia elicited a persistent hyperpolarization of 15.6 +/- 5.0 mV. In the remaining DVNs, anoxic exposure either did not produce a change in Em (37%) or led to a depolarization of less than 10 mV (25%). A stable depolarization of 9 +/- 3.8 mV was detected in glial cells during anoxia. Similar responses were revealed in oxygenated glucose-free solution after a delay of 12-60 min. 5. The metabolism-related hyperpolarizations were blocked by 100-500 microM tolbutamide or 20-100 microM glibenclamide, leading to recovery of spontaneous (0.5-6 Hz) spike discharge. In these cells, 400-500 microM diazoxide evoked hyperpolarizations and blockade of spontaneous activity. 6. In DVNs and glial cells, a progressive depolarization of up to 40 mV in amplitude developed during anoxic exposure after pre-incubation in glucose-free solution. 7. The results show that oxygen or glucose depletion does not impair the viability of DVNX cells. The contribution of neuronal ATP-sensitive K+ (KATP) channels to this tolerance is discussed.
Full text
PDF















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashford M. L., Boden P. R., Treherne J. M. Tolbutamide excites rat glucoreceptive ventromedial hypothalamic neurones by indirect inhibition of ATP-K+ channels. Br J Pharmacol. 1990 Nov;101(3):531–540. doi: 10.1111/j.1476-5381.1990.tb14116.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ballanyi K., Branchereau P., Champagnat J., Fortin G., Velluti J. Extracellular potassium, glial and neuronal potentials in the solitary complex of rat brainstem slices. Brain Res. 1993 Apr 2;607(1-2):99–107. doi: 10.1016/0006-8993(93)91493-c. [DOI] [PubMed] [Google Scholar]
- Ballanyi K., Grafe P., Reddy M. M., ten Bruggencate G. Different types of potassium transport linked to carbachol and gamma-aminobutyric acid actions in rat sympathetic neurons. Neuroscience. 1984 Jul;12(3):917–927. doi: 10.1016/0306-4522(84)90179-9. [DOI] [PubMed] [Google Scholar]
- Brockhaus J., Ballanyi K., Smith J. C., Richter D. W. Microenvironment of respiratory neurons in the in vitro brainstem-spinal cord of neonatal rats. J Physiol. 1993 Mar;462:421–445. doi: 10.1113/jphysiol.1993.sp019562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chesler M. The regulation and modulation of pH in the nervous system. Prog Neurobiol. 1990;34(5):401–427. doi: 10.1016/0301-0082(90)90034-e. [DOI] [PubMed] [Google Scholar]
- Cowan A. I., Martin R. L. Ionic basis of membrane potential changes induced by anoxia in rat dorsal vagal motoneurones. J Physiol. 1992 Sep;455:89–109. doi: 10.1113/jphysiol.1992.sp019292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duchen M. R. Ca(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. Biochem J. 1992 Apr 1;283(Pt 1):41–50. doi: 10.1042/bj2830041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duffy T. E., Kohle S. J., Vannucci R. C. Carbohydrate and energy metabolism in perinatal rat brain: relation to survival in anoxia. J Neurochem. 1975 Feb;24(2):271–276. doi: 10.1111/j.1471-4159.1975.tb11875.x. [DOI] [PubMed] [Google Scholar]
- Grote J., Zimmer K., Schubert R. Effects of severe arterial hypocapnia on regional blood flow regulation, tissue PO2 and metabolism in the brain cortex of cats. Pflugers Arch. 1981 Sep;391(3):195–199. doi: 10.1007/BF00596170. [DOI] [PubMed] [Google Scholar]
- Haddad G. G., Jiang C. O2 deprivation in the central nervous system: on mechanisms of neuronal response, differential sensitivity and injury. Prog Neurobiol. 1993 Mar;40(3):277–318. doi: 10.1016/0301-0082(93)90014-j. [DOI] [PubMed] [Google Scholar]
- Hansen A. J. Effect of anoxia on ion distribution in the brain. Physiol Rev. 1985 Jan;65(1):101–148. doi: 10.1152/physrev.1985.65.1.101. [DOI] [PubMed] [Google Scholar]
- Hansen A. J., Hounsgaard J., Jahnsen H. Anoxia increases potassium conductance in hippocampal nerve cells. Acta Physiol Scand. 1982 Jul;115(3):301–310. doi: 10.1111/j.1748-1716.1982.tb07082.x. [DOI] [PubMed] [Google Scholar]
- Harold D. E., Walz W. Metabolic inhibition and electrical properties of type-1-like cortical astrocytes. Neuroscience. 1992;47(1):203–211. doi: 10.1016/0306-4522(92)90133-m. [DOI] [PubMed] [Google Scholar]
- Heaton R. C., Wray S., Eisner D. A. Effects of metabolic inhibition and changes of intracellular pH on potassium permeability and contraction of rat uterus. J Physiol. 1993 Jun;465:43–56. doi: 10.1113/jphysiol.1993.sp019665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hochachka P. W. Defense strategies against hypoxia and hypothermia. Science. 1986 Jan 17;231(4735):234–241. doi: 10.1126/science.2417316. [DOI] [PubMed] [Google Scholar]
- Jiang C., Haddad G. G. Differential responses of neocortical neurons to glucose and/or O2 deprivation in the human and rat. J Neurophysiol. 1992 Dec;68(6):2165–2173. doi: 10.1152/jn.1992.68.6.2165. [DOI] [PubMed] [Google Scholar]
- Krnjević K., Walz W. Acidosis and blockade of orthodromic responses caused by anoxia in rat hippocampal slices at different temperatures. J Physiol. 1990 Mar;422:127–144. doi: 10.1113/jphysiol.1990.sp017976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leniger-Follert E., Lübbers D. W., Wrabetz W. Regulation of local tissue PO2 of the brain cortex at different arterial O2 pressures. Pflugers Arch. 1975 Aug 29;359(1-2):81–95. doi: 10.1007/BF00581279. [DOI] [PubMed] [Google Scholar]
- McCormack J. G., Halestrap A. P., Denton R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev. 1990 Apr;70(2):391–425. doi: 10.1152/physrev.1990.70.2.391. [DOI] [PubMed] [Google Scholar]
- Murphy K. P., Greenfield S. A. Neuronal selectivity of ATP-sensitive potassium channels in guinea-pig substantia nigra revealed by responses to anoxia. J Physiol. 1992;453:167–183. doi: 10.1113/jphysiol.1992.sp019222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nieber K., Sevcik J., Illes P. Hypoxic changes in rat locus coeruleus neurons in vitro. J Physiol. 1995 Jul 1;486(Pt 1):33–46. doi: 10.1113/jphysiol.1995.sp020788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sick T. J., Rosenthal M., LaManna J. C., Lutz P. L. Brain potassium ion homeostasis, anoxia, and metabolic inhibition in turtles and rats. Am J Physiol. 1982 Sep;243(3):R281–R288. doi: 10.1152/ajpregu.1982.243.3.R281. [DOI] [PubMed] [Google Scholar]
- Silver I. A., Erecińska M. Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. J Gen Physiol. 1990 May;95(5):837–866. doi: 10.1085/jgp.95.5.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spuler A., Endres W., Grafe P. Glucose depletion hyperpolarizes guinea pig hippocampal neurons by an increase in potassium conductance. Exp Neurol. 1988 Apr;100(1):248–252. doi: 10.1016/0014-4886(88)90217-8. [DOI] [PubMed] [Google Scholar]
- Terzic A., Tung R. T., Kurachi Y. Nucleotide regulation of ATP sensitive potassium channels. Cardiovasc Res. 1994 Jun;28(6):746–753. doi: 10.1093/cvr/28.6.746. [DOI] [PubMed] [Google Scholar]
- Trapp S., Ballanyi K. KATP channel mediation of anoxia-induced outward current in rat dorsal vagal neurons in vitro. J Physiol. 1995 Aug 15;487(1):37–50. doi: 10.1113/jphysiol.1995.sp020859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Travagli R. A., Gillis R. A., Rossiter C. D., Vicini S. Glutamate and GABA-mediated synaptic currents in neurons of the rat dorsal motor nucleus of the vagus. Am J Physiol. 1991 Mar;260(3 Pt 1):G531–G536. doi: 10.1152/ajpgi.1991.260.3.G531. [DOI] [PubMed] [Google Scholar]
- Tsacopoulos M., Poitry S. Kinetics of oxygen consumption after a single flash of light in photoreceptors of the drone (Apis mellifera). J Gen Physiol. 1982 Jul;80(1):19–55. doi: 10.1085/jgp.80.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voipio J., Kaila K. Interstitial PCO2 and pH in rat hippocampal slices measured by means of a novel fast CO2/H(+)-sensitive microelectrode based on a PVC-gelled membrane. Pflugers Arch. 1993 May;423(3-4):193–201. doi: 10.1007/BF00374394. [DOI] [PubMed] [Google Scholar]
- Walz W. pH shifts evoked by neuronal stimulation in slices of rat hippocampus. Can J Physiol Pharmacol. 1989 Jun;67(6):577–581. doi: 10.1139/y89-092. [DOI] [PubMed] [Google Scholar]
- Xia Y., Jiang C., Haddad G. G. Oxidative and glycolytic pathways in rat (newborn and adult) and turtle brain: role during anoxia. Am J Physiol. 1992 Apr;262(4 Pt 2):R595–R603. doi: 10.1152/ajpregu.1992.262.4.R595. [DOI] [PubMed] [Google Scholar]