Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1996 Sep 15;495(Pt 3):863–874. doi: 10.1113/jphysiol.1996.sp021638

Nitric oxide and exercise in the horse.

P C Mills 1, D J Marlin 1, E Demoncheaux 1, C Scott 1, I Casas 1, N C Smith 1, T Higenbottam 1
PMCID: PMC1160787  PMID: 8887788

Abstract

1. The effects of exercise on the production rate of nitric oxide (NO) in exhaled air (VNO) and the effects of inhaled NO (80 p.p.m.) on cardiovascular and respiratory parameters were investigated in five Throughbred horses. 2. The concentration of NO ([NO]) in exhaled air collected from within the nasal opening was lower when collected at a high flow rate of 80 l min-1 than at a low flow rate of 20 l min-1: when trotting at 3.7 m s-1 the values were 0.78 +/- 0.15 and 1.23 +/- 9.14 p.p.b., respectively, and when cantering at 9 m s-1 the values were 1.69 +/- 0.31 and 2.25 +/- 0.32 p.p.b., respectively. 3. Nebulized methoxamine (40 mg ml-1 for 60 s), an alpha 1-adrenergic agonist, further reduced [NO] during the 9 m s-1 canter to 1.05 +/- 0.14 and 1.99 +/- 0.41 p.p.b. when collected at 80 and 20 l min-1, respectively, and induced cyclical changes in the breathing pattern. 4. Exercise induced a linear increase in VNO with work intensity to a maximum (428.1 +/- 31.6 pmol min-1 kg-1) which coincided with the maximal oxygen uptake for the horses (138.3 +/- 11.7 ml min-1 kg-1), although a further increase in VNO (779.3 +/- 38.4 pmol min-1 kg-1) occurred immediately after exercise. The changes in VNO correlated well with the tidal volume (r = 0.968; P < 0.01) and the haematocrit (r = 0.855; P < 0.01). 5. In the first 2 min of high intensity exercise, inhaled NO (80 p.p.m.) significantly (P < 0.05) reduced the pulmonary artery pressure: during the first minute, pulmonary artery pressure was 83.1 +/- 7.6 mmHg compared with a control value of 94.4 +/- 6.3 mmHg, and during the second minute, 84.2 +/- 7.1 mmHg compared with a control value of 98.4 +/- 4.7 mmHg. There were no other significant changes in cardiovascular or respiratory indices, including cardiac output, measured during exercise between control and inhaled NO tests. 6. The results show that exhaled NO is released from the airways of the horse and may contribute to the regulation of pulmonary vascular tone during exercise.

Full text

PDF
863

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer S. L., Tolins J. P., Raij L., Weir E. K. Hypoxic pulmonary vasoconstriction is enhanced by inhibition of the synthesis of an endothelium derived relaxing factor. Biochem Biophys Res Commun. 1989 Nov 15;164(3):1198–1205. doi: 10.1016/0006-291x(89)91796-8. [DOI] [PubMed] [Google Scholar]
  2. Baile E. M., Dahlby R. W., Wiggs B. R., Paré P. D. Role of tracheal and bronchial circulation in respiratory heat exchange. J Appl Physiol (1985) 1985 Jan;58(1):217–222. doi: 10.1152/jappl.1985.58.1.217. [DOI] [PubMed] [Google Scholar]
  3. Bauer J. A., Wald J. A., Doran S., Soda D. Endogenous nitric oxide in expired air: effects of acute exercise in humans. Life Sci. 1994;55(24):1903–1909. doi: 10.1016/0024-3205(94)00522-2. [DOI] [PubMed] [Google Scholar]
  4. Bigatello L. M., Hurford W. E., Kacmarek R. M., Roberts J. D., Jr, Zapol W. M. Prolonged inhalation of low concentrations of nitric oxide in patients with severe adult respiratory distress syndrome. Effects on pulmonary hemodynamics and oxygenation. Anesthesiology. 1994 Apr;80(4):761–770. doi: 10.1097/00000542-199404000-00007. [DOI] [PubMed] [Google Scholar]
  5. Borland C., Cox Y., Higenbottam T. Measurement of exhaled nitric oxide in man. Thorax. 1993 Nov;48(11):1160–1162. doi: 10.1136/thx.48.11.1160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Butler P. J., Woakes A. J., Smale K., Roberts C. A., Hillidge C. J., Snow D. H., Marlin D. J. Respiratory and cardiovascular adjustments during exercise of increasing intensity and during recovery in thoroughbred racehorses. J Exp Biol. 1993 Jun;179:159–180. doi: 10.1242/jeb.179.1.159. [DOI] [PubMed] [Google Scholar]
  7. Cabanes L., Costes F., Weber S., Regnard J., Benvenuti C., Castaigne A., Guerin F., Lockhart A. Improvement in exercise performance by inhalation of methoxamine in patients with impaired left ventricular function. N Engl J Med. 1992 Jun 18;326(25):1661–1665. doi: 10.1056/NEJM199206183262503. [DOI] [PubMed] [Google Scholar]
  8. Cremona G., Higenbottam T., Takao M., Hall L., Bower E. A. Exhaled nitric oxide in isolated pig lungs. J Appl Physiol (1985) 1995 Jan;78(1):59–63. doi: 10.1152/jappl.1995.78.1.59. [DOI] [PubMed] [Google Scholar]
  9. Cremona G., Wood A. M., Hall L. W., Bower E. A., Higenbottam T. Effect of inhibitors of nitric oxide release and action on vascular tone in isolated lungs of pig, sheep, dog and man. J Physiol. 1994 Nov 15;481(Pt 1):185–195. doi: 10.1113/jphysiol.1994.sp020429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dainty I. A., McGrath J. C., Spedding M., Templeton A. G. The influence of the initial stretch and the agonist-induced tone on the effect of basal and stimulated release of EDRF. Br J Pharmacol. 1990 Aug;100(4):767–773. doi: 10.1111/j.1476-5381.1990.tb14090.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dinh Xuan A. T., Chaussain M., Regnard J., Lockhart A. Pretreatment with an inhaled alpha 1-adrenergic agonist, methoxamine, reduces exercise-induced asthma. Eur Respir J. 1989 May;2(5):409–414. [PubMed] [Google Scholar]
  12. Erickson B. K., Erickson H. H., Coffman J. R. Pulmonary artery, aortic and oesophageal pressure changes during high intensity treadmill exercise in the horse: a possible relation to exercise-induced pulmonary haemorrhage. Equine Vet J Suppl. 1990 Jun;(9):47–52. doi: 10.1111/j.2042-3306.1990.tb04734.x. [DOI] [PubMed] [Google Scholar]
  13. Foubert L., Fleming B., Latimer R., Jonas M., Oduro A., Borland C., Higenbottam T. Safety guidelines for use of nitric oxide. Lancet. 1992 Jun 27;339(8809):1615–1616. doi: 10.1016/0140-6736(92)91886-d. [DOI] [PubMed] [Google Scholar]
  14. Frostell C., Fratacci M. D., Wain J. C., Jones R., Zapol W. M. Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation. 1991 Jun;83(6):2038–2047. doi: 10.1161/01.cir.83.6.2038. [DOI] [PubMed] [Google Scholar]
  15. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  16. Gerlach H., Rossaint R., Pappert D., Knorr M., Falke K. J. Autoinhalation of nitric oxide after endogenous synthesis in nasopharynx. Lancet. 1994 Feb 26;343(8896):518–519. doi: 10.1016/s0140-6736(94)91465-6. [DOI] [PubMed] [Google Scholar]
  17. Gilbert I. A., Fouke J. M., McFadden E. R., Jr Heat and water flux in the intrathoracic airways and exercise-induced asthma. J Appl Physiol (1985) 1987 Oct;63(4):1681–1691. doi: 10.1152/jappl.1987.63.4.1681. [DOI] [PubMed] [Google Scholar]
  18. Grimminger F., Spriestersbach R., Weissmann N., Walmrath D., Seeger W. Nitric oxide generation and hypoxic vasoconstriction in buffer-perfused rabbit lungs. J Appl Physiol (1985) 1995 Apr;78(4):1509–1515. doi: 10.1152/jappl.1995.78.4.1509. [DOI] [PubMed] [Google Scholar]
  19. Gryglewski R. J., Palmer R. M., Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature. 1986 Apr 3;320(6061):454–456. doi: 10.1038/320454a0. [DOI] [PubMed] [Google Scholar]
  20. Gustafsson L. E., Leone A. M., Persson M. G., Wiklund N. P., Moncada S. Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem Biophys Res Commun. 1991 Dec 16;181(2):852–857. doi: 10.1016/0006-291x(91)91268-h. [DOI] [PubMed] [Google Scholar]
  21. Hodgson D. R., McCutcheon L. J., Byrd S. K., Brown W. S., Bayly W. M., Brengelmann G. L., Gollnick P. D. Dissipation of metabolic heat in the horse during exercise. J Appl Physiol (1985) 1993 Mar;74(3):1161–1170. doi: 10.1152/jappl.1993.74.3.1161. [DOI] [PubMed] [Google Scholar]
  22. Iwamoto J., Morin F. C., 3rd Nitric oxide inhibition varies with hemoglobin saturation. J Appl Physiol (1985) 1993 Nov;75(5):2332–2336. doi: 10.1152/jappl.1993.75.5.2332. [DOI] [PubMed] [Google Scholar]
  23. Iwamoto J., Pendergast D. R., Suzuki H., Krasney J. A. Effect of graded exercise on nitric oxide in expired air in humans. Respir Physiol. 1994 Aug;97(3):333–345. doi: 10.1016/0034-5687(94)90069-8. [DOI] [PubMed] [Google Scholar]
  24. Johns R. A., Linden J. M., Peach M. J. Endothelium-dependent relaxation and cyclic GMP accumulation in rabbit pulmonary artery are selectively impaired by moderate hypoxia. Circ Res. 1989 Dec;65(6):1508–1515. doi: 10.1161/01.res.65.6.1508. [DOI] [PubMed] [Google Scholar]
  25. Johnson R. L., Jr, Hsia C. C. Functional recruitment of pulmonary capillaries. J Appl Physiol (1985) 1994 Apr;76(4):1405–1407. doi: 10.1152/jappl.1994.76.4.1405. [DOI] [PubMed] [Google Scholar]
  26. Kane D. W., Tesauro T., Koizumi T., Gupta R., Newman J. H. Exercise-induced pulmonary vasoconstriction during combined blockade of nitric oxide synthase and beta adrenergic receptors. J Clin Invest. 1994 Feb;93(2):677–683. doi: 10.1172/JCI117020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Koizumi T., Gupta R., Banerjee M., Newman J. H. Changes in pulmonary vascular tone during exercise. Effects of nitric oxide (NO) synthase inhibition, L-arginine infusion, and NO inhalation. J Clin Invest. 1994 Dec;94(6):2275–2282. doi: 10.1172/JCI117590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lundberg J. O., Farkas-Szallasi T., Weitzberg E., Rinder J., Lidholm J., Anggåard A., Hökfelt T., Lundberg J. M., Alving K. High nitric oxide production in human paranasal sinuses. Nat Med. 1995 Apr;1(4):370–373. doi: 10.1038/nm0495-370. [DOI] [PubMed] [Google Scholar]
  29. Manohar M. Effects of glyceryl trinitrate (nitroglycerin) on pulmonary vascular pressures in standing thoroughbred horses. Equine Vet J. 1995 Jul;27(4):275–280. doi: 10.1111/j.2042-3306.1995.tb03076.x. [DOI] [PubMed] [Google Scholar]
  30. Manohar M. Pulmonary vascular pressures of thoroughbreds increase rapidly and to a higher level with rapid onset of high-intensity exercise than slow onset. Equine Vet J. 1994 Nov;26(6):496–499. doi: 10.1111/j.2042-3306.1994.tb04057.x. [DOI] [PubMed] [Google Scholar]
  31. Manohar M. Tracheobronchial perfusion during exercise in ponies. J Appl Physiol (1985) 1990 May;68(5):2182–2185. doi: 10.1152/jappl.1990.68.5.2182. [DOI] [PubMed] [Google Scholar]
  32. Maroun M. J., Mehta S., Turcotte R., Cosio M. G., Hussain S. N. Effects of physical conditioning on endogenous nitric oxide output during exercise. J Appl Physiol (1985) 1995 Oct;79(4):1219–1225. doi: 10.1152/jappl.1995.79.4.1219. [DOI] [PubMed] [Google Scholar]
  33. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  34. Nathan C., Xie Q. W. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994 Sep 23;78(6):915–918. doi: 10.1016/0092-8674(94)90266-6. [DOI] [PubMed] [Google Scholar]
  35. Nelin L. D., Moshin J., Thomas C. J., Sasidharan P., Dawson C. A. The effect of inhaled nitric oxide on the pulmonary circulation of the neonatal pig. Pediatr Res. 1994 Jan;35(1):20–24. doi: 10.1203/00006450-199401000-00006. [DOI] [PubMed] [Google Scholar]
  36. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  37. Pepke-Zaba J., Higenbottam T. W., Dinh-Xuan A. T., Stone D., Wallwork J. Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet. 1991 Nov 9;338(8776):1173–1174. doi: 10.1016/0140-6736(91)92033-x. [DOI] [PubMed] [Google Scholar]
  38. Persson M. G., Lönnqvist P. A., Gustafsson L. E. Positive end-expiratory pressure ventilation elicits increases in endogenously formed nitric oxide as detected in air exhaled by rabbits. Anesthesiology. 1995 Apr;82(4):969–974. doi: 10.1097/00000542-199504000-00021. [DOI] [PubMed] [Google Scholar]
  39. Persson M. G., Wiklund N. P., Gustafsson L. E. Endogenous nitric oxide in single exhalations and the change during exercise. Am Rev Respir Dis. 1993 Nov;148(5):1210–1214. doi: 10.1164/ajrccm/148.5.1210. [DOI] [PubMed] [Google Scholar]
  40. Pohl U., Wagner K., de Wit C. Endothelium-derived nitric oxide in the control of tissue perfusion and oxygen supply: physiological and pathophysiological implications. Eur Heart J. 1993 Nov;14 (Suppl 1):93–98. [PubMed] [Google Scholar]
  41. Roos C. M., Rich G. F., Uncles D. R., Daugherty M. O., Frank D. U. Sites of vasodilation by inhaled nitric oxide vs. sodium nitroprusside in endothelin-constricted isolated rat lungs. J Appl Physiol (1985) 1994 Jul;77(1):51–57. doi: 10.1152/jappl.1994.77.1.51. [DOI] [PubMed] [Google Scholar]
  42. Smith T. L., Prazma J., Coleman C. C., Drake A. F., Boucher R. C. Control of the mucosal microcirculation in the upper respiratory tract. Otolaryngol Head Neck Surg. 1993 Oct;109(4):646–652. doi: 10.1177/019459989310900403. [DOI] [PubMed] [Google Scholar]
  43. Trolin G., Andén T., Hedenstierna G. Nitric oxide (NO) in expired air at rest and during exercise. Acta Physiol Scand. 1994 Jun;151(2):159–163. doi: 10.1111/j.1748-1716.1994.tb09733.x. [DOI] [PubMed] [Google Scholar]
  44. Vane J. R., Anggård E. E., Botting R. M. Regulatory functions of the vascular endothelium. N Engl J Med. 1990 Jul 5;323(1):27–36. doi: 10.1056/NEJM199007053230106. [DOI] [PubMed] [Google Scholar]
  45. Wagner P. D., Gillespie J. R., Landgren G. L., Fedde M. R., Jones B. W., DeBowes R. M., Pieschl R. L., Erickson H. H. Mechanism of exercise-induced hypoxemia in horses. J Appl Physiol (1985) 1989 Mar;66(3):1227–1233. doi: 10.1152/jappl.1989.66.3.1227. [DOI] [PubMed] [Google Scholar]
  46. Wennmalm A., Benthin G., Petersson A. S. Dependence of the metabolism of nitric oxide (NO) in healthy human whole blood on the oxygenation of its red cell haemoglobin. Br J Pharmacol. 1992 Jul;106(3):507–508. doi: 10.1111/j.1476-5381.1992.tb14365.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. West J. B., Mathieu-Costello O., Jones J. H., Birks E. K., Logemann R. B., Pascoe J. R., Tyler W. S. Stress failure of pulmonary capillaries in racehorses with exercise-induced pulmonary hemorrhage. J Appl Physiol (1985) 1993 Sep;75(3):1097–1109. doi: 10.1152/jappl.1993.75.3.1097. [DOI] [PubMed] [Google Scholar]
  48. West J. B., Mathieu-Costello O. Stress failure of pulmonary capillaries as a limiting factor for maximal exercise. Eur J Appl Physiol Occup Physiol. 1995;70(2):99–108. doi: 10.1007/BF00361536. [DOI] [PubMed] [Google Scholar]
  49. Zapol W. M., Hurford W. E. Inhaled nitric oxide in adult respiratory distress syndrome and other lung diseases. Adv Pharmacol. 1994;31:513–530. doi: 10.1016/s1054-3589(08)60639-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES