Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1996 Sep 1;495(Pt 2):465–478. doi: 10.1113/jphysiol.1996.sp021607

The ionic dependence of the histamine-induced depolarization of vasopressin neurones in the rat supraoptic nucleus.

B N Smith 1, W E Armstrong 1
PMCID: PMC1160805  PMID: 8887757

Abstract

1. The ionic basis of the histamine-induced depolarization of immunohistochemically identified neurones in the supraoptic nucleus (SON) was investigated in the hypothalamo-neurohypophysial explant of male rats. Histamine (0.1-100 microM) caused an H1 receptor-mediated, dose-dependent depolarization of fifty of sixty-two vasopressin neurones in the SON. In contrast, twenty-three oxytocin neurones were either depolarized (n = 6), hyperpolarized (n = 4), or unaffected (n = 13) by histamine. Due to the low percentage of responding cells, oxytocin neurones were not further investigated. 2. Chelation of intracellular Ca2+ with 1,2-bis(2-aminophenoxy)ethane N,N,N',N'-tetraacetic acid (BAPTA; 100-500 mM) blocked the depolarization, whereas blocking Ca2+ influx and synaptic transmission with equimolar Co2+ or elevated (5-20 mM) Mg2+ in nominally Ca(2+)-free solutions was without effect. 3. The amplitude of the histamine-induced depolarization was relatively independent of membrane potential. The input resistance was unaltered by histamine in nine neurones, but in nine other neurones it was decreased and in two neurones it was increased by more than 5%. Neither elevating extracellular K+ nor addition of the K+ channel blockers, apamin, d-tubocurarine, tetraethylammonium (TEA), or intracellular Cs+ decreased the histamine effect. Indeed, broadly blocking K+ currents with TEA and Cs+ significantly increased the depolarization to histamine. 4. Tetrodotoxin (2-3 microM) did not inhibit the histamine-induced depolarization. However, equimolar replacement of approximately 50% of extracellular Na+ with Tris+ or N-methyl-D-glucamine reduced or eliminated the response. 5. The depolarization of vasopressin neurones by histamine thus requires extracellular Na+ and intracellular Ca2+. Activation of a Ca(2+)-activated non-specific cation current or a Ca(2+)-Na+ pump are possible mechanisms for this effect.

Full text

PDF
465

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong W. E., Sladek C. D. Evidence for excitatory actions of histamine on supraoptic neurons in vitro: mediation by an H1-type receptor. Neuroscience. 1985 Oct;16(2):307–322. doi: 10.1016/0306-4522(85)90004-1. [DOI] [PubMed] [Google Scholar]
  2. Armstrong W. E., Smith B. N., Tian M. Electrophysiological characteristics of immunochemically identified rat oxytocin and vasopressin neurones in vitro. J Physiol. 1994 Feb 15;475(1):115–128. doi: 10.1113/jphysiol.1994.sp020053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armstrong W. E., Smith B. N. Tuberal supraoptic neurons--II. Electrotonic properties. Neuroscience. 1990;38(2):485–494. doi: 10.1016/0306-4522(90)90044-5. [DOI] [PubMed] [Google Scholar]
  4. Arrang J. M., Garbarg M., Schwartz J. C. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature. 1983 Apr 28;302(5911):832–837. doi: 10.1038/302832a0. [DOI] [PubMed] [Google Scholar]
  5. Ben-Barak Y., Russell J. T., Whitnall M. H., Ozato K., Gainer H. Neurophysin in the hypothalamo-neurohypophysial system. I. Production and characterization of monoclonal antibodies. J Neurosci. 1985 Jan;5(1):81–97. doi: 10.1523/JNEUROSCI.05-01-00081.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bennett C. T., Pert A. Antidiuresis produced by injections of histamine into the cat supraoptic nucleus. Brain Res. 1974 Sep 20;78(1):151–156. doi: 10.1016/0006-8993(74)90361-8. [DOI] [PubMed] [Google Scholar]
  7. Blaustein M. P. Calcium transport and buffering in neurons. Trends Neurosci. 1988 Oct;11(10):438–443. doi: 10.1016/0166-2236(88)90195-6. [DOI] [PubMed] [Google Scholar]
  8. Bourque C. W., Brown D. A. Apamin and d-tubocurarine block the afterhyperpolarization of rat supraoptic neurosecretory neurons. Neurosci Lett. 1987 Nov 23;82(2):185–190. doi: 10.1016/0304-3940(87)90127-3. [DOI] [PubMed] [Google Scholar]
  9. Bourque C. W. Transient calcium-dependent potassium current in magnocellular neurosecretory cells of the rat supraoptic nucleus. J Physiol. 1988 Mar;397:331–347. doi: 10.1113/jphysiol.1988.sp017004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Caeser M., Brown D. A., Gähwiler B. H., Knöpfel T. Characterization of a calcium-dependent current generating a slow afterdepolarization of CA3 pyramidal cells in rat hippocampal slice cultures. Eur J Neurosci. 1993 Jun 1;5(6):560–569. doi: 10.1111/j.1460-9568.1993.tb00521.x. [DOI] [PubMed] [Google Scholar]
  11. Cobbett P., Legendre P., Mason W. T. Characterization of three types of potassium current in cultured neurones of rat supraoptic nucleus area. J Physiol. 1989 Mar;410:443–462. doi: 10.1113/jphysiol.1989.sp017543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Daum P. R., Downes C. P., Young J. M. Histamine stimulation of inositol 1-phosphate accumulation in lithium-treated slices from regions of guinea pig brain. J Neurochem. 1984 Jul;43(1):25–32. doi: 10.1111/j.1471-4159.1984.tb06674.x. [DOI] [PubMed] [Google Scholar]
  13. Dogterom J., van Wimersma Greidanus T. B., De Wied D. Histamine as an extremely potent releaser of vasopressin in the rat. Experientia. 1976 May 15;32(5):659–660. doi: 10.1007/BF01990220. [DOI] [PubMed] [Google Scholar]
  14. Friedman A., Arens J., Heinemann U., Gutnick M. J. Slow depolarizing afterpotentials in neocortical neurons are sodium and calcium dependent. Neurosci Lett. 1992 Jan 20;135(1):13–17. doi: 10.1016/0304-3940(92)90125-q. [DOI] [PubMed] [Google Scholar]
  15. Gibson G. E., Manger T. Changes in cytosolic free calcium with 1,2,3,4-tetrahydro-5-aminoacridine, 4-aminopyridine and 3,4-diaminopyridine. Biochem Pharmacol. 1988 Nov 1;37(21):4191–4196. doi: 10.1016/0006-2952(88)90115-3. [DOI] [PubMed] [Google Scholar]
  16. Haas H. L., Greene R. W. Effects of histamine on hippocampal pyramidal cells of the rat in vitro. Exp Brain Res. 1986;62(1):123–130. doi: 10.1007/BF00237408. [DOI] [PubMed] [Google Scholar]
  17. Haas H. L., Wolf P., Nussbaumer J. C. Histamine: action on supraoptic and other hypothalamic neurones of the cat. Brain Res. 1975 Apr 25;88(1):166–170. doi: 10.1016/0006-8993(75)90967-1. [DOI] [PubMed] [Google Scholar]
  18. Heemskerk F. M., Schrama L. H., Ghijsen W. E., De Graan P. N., Lopes da Silva F. H., Gispen W. H. Presynaptic mechanism of action of 4-aminopyridine: changes in intracellular free Ca2+ concentration and its relationship to B-50 (GAP-43) phosphorylation. J Neurochem. 1991 Jun;56(6):1827–1835. doi: 10.1111/j.1471-4159.1991.tb03437.x. [DOI] [PubMed] [Google Scholar]
  19. Kirkpatrick K., Bourque C. W. Dual role for calcium in the control of spike duration in rat supraoptic neuroendocrine cells. Neurosci Lett. 1991 Dec 9;133(2):271–274. doi: 10.1016/0304-3940(91)90586-i. [DOI] [PubMed] [Google Scholar]
  20. Kjaer A., Larsen P. J., Knigge U., Møller M., Warberg J. Histamine stimulates c-fos expression in hypothalamic vasopressin-, oxytocin-, and corticotropin-releasing hormone-containing neurons. Endocrinology. 1994 Jan;134(1):482–491. doi: 10.1210/endo.134.1.8275963. [DOI] [PubMed] [Google Scholar]
  21. Kjaer A., Larsen P. J., Knigge U., Warberg J. Dehydration stimulates hypothalamic gene expression of histamine synthesis enzyme: importance for neuroendocrine regulation of vasopressin and oxytocin secretion. Endocrinology. 1995 May;136(5):2189–2197. doi: 10.1210/endo.136.5.7720668. [DOI] [PubMed] [Google Scholar]
  22. Li Z., Hatton G. I. Histamine-induced prolonged depolarization in rat supraoptic neurons: G-protein-mediated, Ca(2+)-independent suppression of K+ leakage conductance. Neuroscience. 1996 Jan;70(1):145–158. doi: 10.1016/0306-4522(95)00373-q. [DOI] [PubMed] [Google Scholar]
  23. McClintock T. S., Ache B. W. Histamine directly gates a chloride channel in lobster olfactory receptor neurons. Proc Natl Acad Sci U S A. 1989 Oct;86(20):8137–8141. doi: 10.1073/pnas.86.20.8137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McCormick D. A., Williamson A. Modulation of neuronal firing mode in cat and guinea pig LGNd by histamine: possible cellular mechanisms of histaminergic control of arousal. J Neurosci. 1991 Oct;11(10):3188–3199. doi: 10.1523/JNEUROSCI.11-10-03188.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Palacios J. M., Wamsley J. K., Kuhar M. J. The distribution of histamine H1-receptors in the rat brain: an autoradiographic study. Neuroscience. 1981;6(1):15–37. doi: 10.1016/0306-4522(81)90240-2. [DOI] [PubMed] [Google Scholar]
  26. Partridge L. D., Swandulla D. Calcium-activated non-specific cation channels. Trends Neurosci. 1988 Feb;11(2):69–72. doi: 10.1016/0166-2236(88)90167-1. [DOI] [PubMed] [Google Scholar]
  27. Randle J. C., Bourque C. W., Renaud L. P. Alpha 1-adrenergic receptor activation depolarizes rat supraoptic neurosecretory neurons in vitro. Am J Physiol. 1986 Sep;251(3 Pt 2):R569–R574. doi: 10.1152/ajpregu.1986.251.3.R569. [DOI] [PubMed] [Google Scholar]
  28. Roberts M. M., Robinson A. G., Fitzsimmons M. D., Grant F., Lee W. S., Hoffman G. E. c-fos expression in vasopressin and oxytocin neurons reveals functional heterogeneity within magnocellular neurons. Neuroendocrinology. 1993 Mar;57(3):388–400. doi: 10.1159/000126384. [DOI] [PubMed] [Google Scholar]
  29. Schwindt P. C., Spain W. J., Crill W. E. Effects of intracellular calcium chelation on voltage-dependent and calcium-dependent currents in cat neocortical neurons. Neuroscience. 1992;47(3):571–578. doi: 10.1016/0306-4522(92)90166-y. [DOI] [PubMed] [Google Scholar]
  30. Smith B. N., Armstrong W. E. Histamine enhances the depolarizing afterpotential of immunohistochemically identified vasopressin neurons in the rat supraoptic nucleus via H1-receptor activation. Neuroscience. 1993 Apr;53(3):855–864. doi: 10.1016/0306-4522(93)90630-x. [DOI] [PubMed] [Google Scholar]
  31. Stafstrom C. E., Schwindt P. C., Chubb M. C., Crill W. E. Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro. J Neurophysiol. 1985 Jan;53(1):153–170. doi: 10.1152/jn.1985.53.1.153. [DOI] [PubMed] [Google Scholar]
  32. Tani E., Shiosaka S., Sato M., Ishikawa T., Tohyama M. Histamine acts directly on calcitonin gene-related peptide- and substance P-containing trigeminal ganglion neurons as assessed by calcium influx and immunocytochemistry. Neurosci Lett. 1990 Jul 31;115(2-3):171–176. doi: 10.1016/0304-3940(90)90450-n. [DOI] [PubMed] [Google Scholar]
  33. Watanabe T., Taguchi Y., Shiosaka S., Tanaka J., Kubota H., Terano Y., Tohyama M., Wada H. Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res. 1984 Mar 12;295(1):13–25. doi: 10.1016/0006-8993(84)90811-4. [DOI] [PubMed] [Google Scholar]
  34. Weiss M. L., Yang Q. Z., Hatton G. I. Magnocellular tuberomammillary nucleus input to the supraoptic nucleus in the rat: anatomical and in vitro electrophysiological investigations. Neuroscience. 1989;31(2):299–311. doi: 10.1016/0306-4522(89)90375-8. [DOI] [PubMed] [Google Scholar]
  35. Yang C. R., Bourque C. W., Renaud L. P. Dopamine D2 receptor activation depolarizes rat supraoptic neurones in hypothalamic explants. J Physiol. 1991 Nov;443:405–419. doi: 10.1113/jphysiol.1991.sp018840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yang Q. Z., Hatton G. I. Histamine mediates fast synaptic inhibition of rat supraoptic oxytocin neurons via chloride conductance activation. Neuroscience. 1994 Aug;61(4):955–964. doi: 10.1016/0306-4522(94)90415-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES