Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1996 Oct 1;496(Pt 1):103–109. doi: 10.1113/jphysiol.1996.sp021668

Contrasting effects of hypoxia on cytosolic Ca2+ spikes in conduit and resistance myocytes of the rabbit pulmonary artery.

J Ureña 1, A Franco-Obregón 1, J López-Barneo 1
PMCID: PMC1160827  PMID: 8910199

Abstract

1. The effects of hypoxia on cytosolic Ca2+ ¿[Ca2+]i) and spontaneous cytosolic Ca2+ spikes were examined in fura 2-loaded myocytes isolated from conduit and resistance branches of the rabbit pulmonary artery. In all myocyte classes, generation of the Ca2+ spikes was modulated by basal [Ca2+]i which, in turn, was influenced by the influx of Ca2+ through L-type Ca2+ channels of the plasmalemma. 2. Conduit and resistance myocytes responded distinctly to hypoxia. In most conduit myocytes (approximately 82% of total; n = 23) exposure to hypoxia reduced basal [Ca2+]i. This effect was often associated with the abolition of the Ca2+ spikes. Hypoxia gave rise to two main responses in resistance myocytes. In a subset of resistance myocytes (41 % of total; n = 34) hypoxia incremented basal [Ca2+]i but reduced Ca2+ spike amplitude. This response mimicked the effect of membrane depolarization with K+ and was reverted by nifedipine or the removal of extracellular Ca2+. In a second subset of resistance myocytes (59% of total; n = 34) hypoxia decreased basal [Ca2+]i and, in most cases, increased spike amplitude; a response counteracted by depolarization with K+. 3. These results indicate that hypoxia can differentially modulate [Ca2+]i in smooth muscle cells from large and small diameter pulmonary vessels through a dual effect on transmembrane Ca2+ influx. Our observations further demonstrate the longitudinal heterogeneity of myocytes along the pulmonary arterial tree and help to explain the hypoxic vasomotor responses in the pulmonary circulation.

Full text

PDF
103

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer S. L., Huang J. M., Reeve H. L., Hampl V., Tolarová S., Michelakis E., Weir E. K. Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia. Circ Res. 1996 Mar;78(3):431–442. doi: 10.1161/01.res.78.3.431. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  3. Blatter L. A., Wier W. G. Agonist-induced [Ca2+]i waves and Ca(2+)-induced Ca2+ release in mammalian vascular smooth muscle cells. Am J Physiol. 1992 Aug;263(2 Pt 2):H576–H586. doi: 10.1152/ajpheart.1992.263.2.H576. [DOI] [PubMed] [Google Scholar]
  4. Dawson C. A. Role of pulmonary vasomotion in physiology of the lung. Physiol Rev. 1984 Apr;64(2):544–616. doi: 10.1152/physrev.1984.64.2.544. [DOI] [PubMed] [Google Scholar]
  5. Franco-Obregón A., López-Barneo J. Differential oxygen sensitivity of calcium channels in rabbit smooth muscle cells of conduit and resistance pulmonary arteries. J Physiol. 1996 Mar 1;491(Pt 2):511–518. doi: 10.1113/jphysiol.1996.sp021235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Franco-Obregón A., Ureña J., López-Barneo J. Oxygen-sensitive calcium channels in vascular smooth muscle and their possible role in hypoxic arterial relaxation. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4715–4719. doi: 10.1073/pnas.92.10.4715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ganitkevich VYa, Isenberg G. Efficacy of peak Ca2+ currents (ICa) as trigger of sarcoplasmic reticulum Ca2+ release in myocytes from the guinea-pig coronary artery. J Physiol. 1995 Apr 15;484(Pt 2):287–306. doi: 10.1113/jphysiol.1995.sp020665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goligorsky M. S., Colflesh D., Gordienko D., Moore L. C. Branching points of renal resistance arteries are enriched in L-type calcium channels and initiate vasoconstriction. Am J Physiol. 1995 Feb;268(2 Pt 2):F251–F257. doi: 10.1152/ajprenal.1995.268.2.F251. [DOI] [PubMed] [Google Scholar]
  9. Harder D. R., Madden J. A., Dawson C. Hypoxic induction of Ca2+-dependent action potentials in small pulmonary arteries of the cat. J Appl Physiol (1985) 1985 Nov;59(5):1389–1393. doi: 10.1152/jappl.1985.59.5.1389. [DOI] [PubMed] [Google Scholar]
  10. Iino M., Endo M. Calcium-dependent immediate feedback control of inositol 1,4,5-triphosphate-induced Ca2+ release. Nature. 1992 Nov 5;360(6399):76–78. doi: 10.1038/360076a0. [DOI] [PubMed] [Google Scholar]
  11. Madden J. A., Vadula M. S., Kurup V. P. Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells. Am J Physiol. 1992 Sep;263(3 Pt 1):L384–L393. doi: 10.1152/ajplung.1992.263.3.L384. [DOI] [PubMed] [Google Scholar]
  12. Marriott J. F., Marshall J. M. Differential effects of hypoxia upon contractions evoked by potassium and noradrenaline in rabbit arteries in vitro. J Physiol. 1990 Mar;422:1–13. doi: 10.1113/jphysiol.1990.sp017968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McMurtry I. F., Davidson A. B., Reeves J. T., Grover R. F. Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs. Circ Res. 1976 Feb;38(2):99–104. doi: 10.1161/01.res.38.2.99. [DOI] [PubMed] [Google Scholar]
  14. Nelson M. T., Cheng H., Rubart M., Santana L. F., Bonev A. D., Knot H. J., Lederer W. J. Relaxation of arterial smooth muscle by calcium sparks. Science. 1995 Oct 27;270(5236):633–637. doi: 10.1126/science.270.5236.633. [DOI] [PubMed] [Google Scholar]
  15. Parker I., Ivorra I. Inhibition by Ca2+ of inositol trisphosphate-mediated Ca2+ liberation: a possible mechanism for oscillatory release of Ca2+. Proc Natl Acad Sci U S A. 1990 Jan;87(1):260–264. doi: 10.1073/pnas.87.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vadula M. S., Kleinman J. G., Madden J. A. Effect of hypoxia and norepinephrine on cytoplasmic free Ca2+ in pulmonary and cerebral arterial myocytes. Am J Physiol. 1993 Dec;265(6 Pt 1):L591–L597. doi: 10.1152/ajplung.1993.265.6.L591. [DOI] [PubMed] [Google Scholar]
  17. Weir E. K., Archer S. L. The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J. 1995 Feb;9(2):183–189. doi: 10.1096/fasebj.9.2.7781921. [DOI] [PubMed] [Google Scholar]
  18. Yuan X. J., Goldman W. F., Tod M. L., Rubin L. J., Blaustein M. P. Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes. Am J Physiol. 1993 Feb;264(2 Pt 1):L116–L123. doi: 10.1152/ajplung.1993.264.2.L116. [DOI] [PubMed] [Google Scholar]
  19. Yuan X. J., Tod M. L., Rubin L. J., Blaustein M. P. Contrasting effects of hypoxia on tension in rat pulmonary and mesenteric arteries. Am J Physiol. 1990 Aug;259(2 Pt 2):H281–H289. doi: 10.1152/ajpheart.1990.259.2.H281. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES