Abstract
1. The effect of simultaneous application of chronic muscle stimulation and salbutamol on the expression of mRNAs and proteins normally expressed by fast- or slow-twitch fibres was followed and the effects of changes in protein expression on mechanical performance were evaluated. Chronic low-frequency stimulation increased the myosin heavy chain (HC)-I level in the canine latissimus dorsi muscle and simultaneous administration of salbutamol partially blocked this change. Associated with the increase in HC-I level was a decrease in the velocity of shortening at zero load, VMAX. The change in VMAX was partially blocked by salbutamol. 2. Chronic low-frequency stimulation increased the levels of slow-twitch cardiac isoform sarco-/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a) and phospholamban mRNA, and SERCA2a and phospholamban protein expression. These changes were associated with an increase in time-to-peak tension and a decrease in fusion frequency. Simultaneous administration of salbutamol blocked these changes in protein expression and muscle mechanics. Chronic stimulation of latissimus dorsi decreased the levels of the fast-twitch isoform of sarco-/endoplasmic reticulum Ca(2+)-ATPase (SERCA1a) and increased SERCA2a protein expression and decreased calcium uptake rate by muscle homogenates. These changes were blocked by salbutamol. 3. The loss of latissimus dorsi muscle weight by chronic stimulation was partially blocked by salbutamol.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acker M. A., Hammond R. L., Mannion J. D., Salmons S., Stephenson L. W. Skeletal muscle as the potential power source for a cardiovascular pump: assessment in vivo. Science. 1987 Apr 17;236(4799):324–327. doi: 10.1126/science.2951849. [DOI] [PubMed] [Google Scholar]
- Armstrong R. B., Saubert C. W., 4th, Seeherman H. J., Taylor C. R. Distribution of fiber types in locomotory muscles of dogs. Am J Anat. 1982 Jan;163(1):87–98. doi: 10.1002/aja.1001630107. [DOI] [PubMed] [Google Scholar]
- BULLER A. J., ECCLES J. C., ECCLES R. M. Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J Physiol. 1960 Feb;150:417–439. doi: 10.1113/jphysiol.1960.sp006395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briggs F. N., Lee K. F., Feher J. J., Wechsler A. S., Ohlendieck K., Campbell K. Ca-ATPase isozyme expression in sarcoplasmic reticulum is altered by chronic stimulation of skeletal muscle. FEBS Lett. 1990 Jan 1;259(2):269–272. doi: 10.1016/0014-5793(90)80025-e. [DOI] [PubMed] [Google Scholar]
- Briggs F. N., Lee K. F., Wechsler A. W., Jones L. R. Phospholamban expressed in slow-twitch and chronically stimulated fast-twitch muscles minimally affects calcium affinity of sarcoplasmic reticulum Ca(2+)-ATPase. J Biol Chem. 1992 Dec 25;267(36):26056–26061. [PubMed] [Google Scholar]
- Brownson C., Little P., Jarvis J. C., Salmons S. Reciprocal changes in myosin isoform mRNAs of rabbit skeletal muscle in response to the initiation and cessation of chronic electrical stimulation. Muscle Nerve. 1992 Jun;15(6):694–700. doi: 10.1002/mus.880150611. [DOI] [PubMed] [Google Scholar]
- Dux L. Muscle relaxation and sarcoplasmic reticulum function in different muscle types. Rev Physiol Biochem Pharmacol. 1993;122:69–147. doi: 10.1007/BFb0035274. [DOI] [PubMed] [Google Scholar]
- Gillis J. M. Relaxation of vertebrate skeletal muscle. A synthesis of the biochemical and physiological approaches. Biochim Biophys Acta. 1985 Jun 3;811(2):97–145. doi: 10.1016/0304-4173(85)90016-3. [DOI] [PubMed] [Google Scholar]
- Glatz J. F., van der Vusse G. J., Havenith M. G., van der Veen F. H., Lucas C. M., Penn O. C., Wellens H. J. Adaptation of energy metabolism of canine latissimus dorsi muscle in response to chronic electrical stimulation. Pflugers Arch. 1992 Jan;420(1):1–8. doi: 10.1007/BF00378634. [DOI] [PubMed] [Google Scholar]
- Goldspink D. F., Cox V. M., Smith S. K., Eaves L. A., Osbaldeston N. J., Lee D. M., Mantle D. Muscle growth in response to mechanical stimuli. Am J Physiol. 1995 Feb;268(2 Pt 1):E288–E297. doi: 10.1152/ajpendo.1995.268.2.E288. [DOI] [PubMed] [Google Scholar]
- Hu P., Yin C., Zhang K. M., Wright L. D., Nixon T. E., Wechsler A. S., Spratt J. A., Briggs F. N. Transcriptional regulation of phospholamban gene and translational regulation of SERCA2 gene produces coordinate expression of these two sarcoplasmic reticulum proteins during skeletal muscle phenotype switching. J Biol Chem. 1995 May 12;270(19):11619–11622. doi: 10.1074/jbc.270.19.11619. [DOI] [PubMed] [Google Scholar]
- Leberer E., Härtner K. T., Brandl C. J., Fujii J., Tada M., MacLennan D. H., Pette D. Slow/cardiac sarcoplasmic reticulum Ca2+-ATPase and phospholamban mRNAs are expressed in chronically stimulated rabbit fast-twitch muscle. Eur J Biochem. 1989 Oct 20;185(1):51–54. doi: 10.1111/j.1432-1033.1989.tb15080.x. [DOI] [PubMed] [Google Scholar]
- Leberer E., Härtner K. T., Pette D. Reversible inhibition of sarcoplasmic reticulum Ca-ATPase by altered neuromuscular activity in rabbit fast-twitch muscle. Eur J Biochem. 1987 Feb 2;162(3):555–561. doi: 10.1111/j.1432-1033.1987.tb10675.x. [DOI] [PubMed] [Google Scholar]
- Mannion J. D., Hammond R., Stephenson L. W. Hydraulic pouches of canine latissimus dorsi. Potential for left ventricular assistance. J Thorac Cardiovasc Surg. 1986 Apr;91(4):534–544. [PubMed] [Google Scholar]
- Mayne C. N., Mokrusch T., Jarvis J. C., Gilroy S. J., Salmons S. Stimulation-induced expression of slow muscle myosin in a fast muscle of the rat. Evidence of an unrestricted adaptive capacity. FEBS Lett. 1993 Aug 2;327(3):297–300. doi: 10.1016/0014-5793(93)81008-n. [DOI] [PubMed] [Google Scholar]
- Ohlendieck K., Briggs F. N., Lee K. F., Wechsler A. W., Campbell K. P. Analysis of excitation-contraction-coupling components in chronically stimulated canine skeletal muscle. Eur J Biochem. 1991 Dec 18;202(3):739–747. doi: 10.1111/j.1432-1033.1991.tb16428.x. [DOI] [PubMed] [Google Scholar]
- Pette D., Düsterhöft S. Altered gene expression in fast-twitch muscle induced by chronic low-frequency stimulation. Am J Physiol. 1992 Mar;262(3 Pt 2):R333–R338. doi: 10.1152/ajpregu.1992.262.3.R333. [DOI] [PubMed] [Google Scholar]
- Reeds P. J., Hay S. M., Dorwood P. M., Palmer R. M. Stimulation of muscle growth by clenbuterol: lack of effect on muscle protein biosynthesis. Br J Nutr. 1986 Jul;56(1):249–258. doi: 10.1079/bjn19860104. [DOI] [PubMed] [Google Scholar]
- Salmons S., Sréter F. A. Significance of impulse activity in the transformation of skeletal muscle type. Nature. 1976 Sep 2;263(5572):30–34. doi: 10.1038/263030a0. [DOI] [PubMed] [Google Scholar]
- Salmons S., Vrbová G. The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol. 1969 May;201(3):535–549. doi: 10.1113/jphysiol.1969.sp008771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schiaffino S., Ausoni S., Gorza L., Saggin L., Gundersen K., Lomo T. Myosin heavy chain isoforms and velocity of shortening of type 2 skeletal muscle fibres. Acta Physiol Scand. 1988 Dec;134(4):575–576. doi: 10.1111/j.1748-1716.1998.tb08539.x. [DOI] [PubMed] [Google Scholar]
- Sola O. M., Herring S., Zhang G., Huang X., Hayashida N., Haines L. C., Thomas R., Kakulas B. A., Sauvage L. R. Significance of the biopsy site of the latissimus dorsi muscle for fiber typing. J Heart Lung Transplant. 1992 Sep-Oct;11(5):S315–S319. [PubMed] [Google Scholar]
- Sweeney H. L., Kushmerick M. J., Mabuchi K., Gergely J., Sréter F. A. Velocity of shortening and myosin isozymes in two types of rabbit fast-twitch muscle fibers. Am J Physiol. 1986 Sep;251(3 Pt 1):C431–C434. doi: 10.1152/ajpcell.1986.251.3.C431. [DOI] [PubMed] [Google Scholar]
- Termin A., Pette D. Changes in myosin heavy-chain isoform synthesis of chronically stimulated rat fast-twitch muscle. Eur J Biochem. 1992 Mar 1;204(2):569–573. doi: 10.1111/j.1432-1033.1992.tb16669.x. [DOI] [PubMed] [Google Scholar]
- Wright L. D., Nixon T. E., Bose R. K., Hsia P. W., Briggs F. N., Spratt J. A. Changes in muscle mechanics during chronic conditioning for cardiomyoplasty. J Surg Res. 1995 Jun;58(6):665–674. doi: 10.1006/jsre.1995.1105. [DOI] [PubMed] [Google Scholar]
- Wright R., Dorsay B. La pratica infermieristica come libera professione: è pronta la società? Prof Inferm. 1995 Jan-Mar;48(1):14, 51-2. [PubMed] [Google Scholar]
- Yang Y. T., McElligott M. A. Multiple actions of beta-adrenergic agonists on skeletal muscle and adipose tissue. Biochem J. 1989 Jul 1;261(1):1–10. doi: 10.1042/bj2610001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeman R. J., Ludemann R., Easton T. G., Etlinger J. D. Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta 2-receptor agonist. Am J Physiol. 1988 Jun;254(6 Pt 1):E726–E732. doi: 10.1152/ajpendo.1988.254.6.E726. [DOI] [PubMed] [Google Scholar]
- Zhang K. M., Hu P., Wang S. W., Feher J. J., Wright L. D., Wechsler A. S., Spratt J. A., Briggs F. N. Salbutamol changes the molecular and mechanical properties of canine skeletal muscle. J Physiol. 1996 Oct 1;496(Pt 1):211–220. doi: 10.1113/jphysiol.1996.sp021678. [DOI] [PMC free article] [PubMed] [Google Scholar]


