Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1996 Nov 1;496(Pt 3):695–710. doi: 10.1113/jphysiol.1996.sp021720

Acidosis of rat dorsal vagal neurons in situ during spontaneous and evoked activity.

S Trapp 1, M Lückermann 1, P A Brooks 1, K Ballanyi 1
PMCID: PMC1160857  PMID: 8930837

Abstract

1. Rat brainstem slices were taken for simultaneous measurements of intracellular pH (pHi) and membrane currents or potentials in dorsal vagal neurons, dialysed with the pH-sensitive dye BCECF. 2. Intrinsic intracellular buffering power was 18 mM per pH unit, as determined by exposure to trimethylamine in CO2/HCO3(-)-free, Hepes-buffered saline. 3. Tonic spike activity led to a stable fall in pHi of 0.05-0.2 pH units from a baseline of 7.19 in current-clamp mode, whereas depolarization from -60 to 0 mV for 1 min in voltage-clamp mode produced an intracellular acidification of 0.3 pH units. The depolarization-evoked fall in pHi was suppressed by 1 mM Ni2+ or 0.2 mM Cd2+, but not by 0.5 microM TTX or CO2/HCO3(-)-free saline. 4. Kainate (100 microM) led to an an inward current of -620 pA and a threefold increase in membrane conductance, accompanied by a fall in pHi of 0.33 pH units. 5. GABA (1 mM) evoked a bicuculline-blockable conductance increase and fall in pHi of up to 0.5 pH units. The GABA-induced pHi decrease, but not the conductance increase, was suppressed in Hepes solution. 6. Neither tonic spike activity, nor resting current or conductance were markedly changed upon Hepes-induced intracellular alkalinizations of up to 0.35 pH units, or by an anoxia-induced fall in pHi of a maximum of 0.36 pH units. 7. The data show that neuronal activity produces profound changes in pHi. It appears that spontaneous spike discharge of dorsal vagal neurons is rather tolerant of major perturbations in pHi.

Full text

PDF
695

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed Z., Connor J. A. Intracellular pH changes induced by calcium influx during electrical activity in molluscan neurons. J Gen Physiol. 1980 Apr;75(4):403–426. doi: 10.1085/jgp.75.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amato A., Ballerini L., Attwell D. Intracellular pH changes produced by glutamate uptake in rat hippocampal slices. J Neurophysiol. 1994 Oct;72(4):1686–1696. doi: 10.1152/jn.1994.72.4.1686. [DOI] [PubMed] [Google Scholar]
  3. Ballanyi K., Doutheil J., Brockhaus J. Membrane potentials and microenvironment of rat dorsal vagal cells in vitro during energy depletion. J Physiol. 1996 Sep 15;495(Pt 3):769–784. doi: 10.1113/jphysiol.1996.sp021632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ballanyi K., Mückenhoff K., Bellingham M. C., Okada Y., Scheid P., Richter D. W. Activity-related pH changes in respiratory neurones and glial cells of cats. Neuroreport. 1994 Dec 30;6(1):33–36. doi: 10.1097/00001756-199412300-00010. [DOI] [PubMed] [Google Scholar]
  5. Bormann J., Hamill O. P., Sakmann B. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J Physiol. 1987 Apr;385:243–286. doi: 10.1113/jphysiol.1987.sp016493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bouvier M., Szatkowski M., Amato A., Attwell D. The glial cell glutamate uptake carrier countertransports pH-changing anions. Nature. 1992 Dec 3;360(6403):471–474. doi: 10.1038/360471a0. [DOI] [PubMed] [Google Scholar]
  7. Brown H. M., Meech R. W. Light induced changes of internal pH in a barnacle photoreceptor and the effect of internal pH on the receptor potential. J Physiol. 1979 Dec;297(0):73–93. doi: 10.1113/jphysiol.1979.sp013028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Buckler K. J., Vaughan-Jones R. D., Peers C., Nye P. C. Intracellular pH and its regulation in isolated type I carotid body cells of the neonatal rat. J Physiol. 1991 May;436:107–129. doi: 10.1113/jphysiol.1991.sp018542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chesler M., Kaila K. Modulation of pH by neuronal activity. Trends Neurosci. 1992 Oct;15(10):396–402. doi: 10.1016/0166-2236(92)90191-a. [DOI] [PubMed] [Google Scholar]
  10. Chesler M. The regulation and modulation of pH in the nervous system. Prog Neurobiol. 1990;34(5):401–427. doi: 10.1016/0301-0082(90)90034-e. [DOI] [PubMed] [Google Scholar]
  11. Dixon D. B., Takahashi K., Copenhagen D. R. L-glutamate suppresses HVA calcium current in catfish horizontal cells by raising intracellular proton concentration. Neuron. 1993 Aug;11(2):267–277. doi: 10.1016/0896-6273(93)90183-r. [DOI] [PubMed] [Google Scholar]
  12. Endres W., Ballanyi K., Serve G., Grafe P. Excitatory amino acids and intracellular pH in motoneurons of the isolated frog spinal cord. Neurosci Lett. 1986 Dec 3;72(1):54–58. doi: 10.1016/0304-3940(86)90617-8. [DOI] [PubMed] [Google Scholar]
  13. Gaillard S., Dupont J. L. Ionic control of intracellular pH in rat cerebellar Purkinje cells maintained in culture. J Physiol. 1990 Jun;425:71–83. doi: 10.1113/jphysiol.1990.sp018093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hansen A. J. Effect of anoxia on ion distribution in the brain. Physiol Rev. 1985 Jan;65(1):101–148. doi: 10.1152/physrev.1985.65.1.101. [DOI] [PubMed] [Google Scholar]
  15. Heaton R. C., Wray S., Eisner D. A. Effects of metabolic inhibition and changes of intracellular pH on potassium permeability and contraction of rat uterus. J Physiol. 1993 Jun;465:43–56. doi: 10.1113/jphysiol.1993.sp019665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaila K., Voipio J. Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance. Nature. 1987 Nov 12;330(6144):163–165. doi: 10.1038/330163a0. [DOI] [PubMed] [Google Scholar]
  17. Paalasmaa P., Taira T., Voipio J., Kaila K. Extracellular alkaline transients mediated by glutamate receptors in the rat hippocampal slice are not due to a proton conductance. J Neurophysiol. 1994 Oct;72(4):2031–2033. doi: 10.1152/jn.1994.72.4.2031. [DOI] [PubMed] [Google Scholar]
  18. Pasternack M., Voipio J., Kaila K. Intracellular carbonic anhydrase activity and its role in GABA-induced acidosis in isolated rat hippocampal pyramidal neurones. Acta Physiol Scand. 1993 Jun;148(2):229–231. doi: 10.1111/j.1748-1716.1993.tb09553.x. [DOI] [PubMed] [Google Scholar]
  19. Pocock G., Richards C. D. Hydrogen Ion Regulation in Rat Cerebellar Granule Cells Studied by Single-Cell Fluorescence Microscopy. Eur J Neurosci. 1992;4(2):136–143. doi: 10.1111/j.1460-9568.1992.tb00860.x. [DOI] [PubMed] [Google Scholar]
  20. Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
  21. Schwiening C. J., Kennedy H. J., Thomas R. C. Calcium-hydrogen exchange by the plasma membrane Ca-ATPase of voltage-clamped snail neurons. Proc Biol Sci. 1993 Sep 22;253(1338):285–289. doi: 10.1098/rspb.1993.0115. [DOI] [PubMed] [Google Scholar]
  22. Sharp A. P., Thomas R. C. The effects of chloride substitution on intracellular pH in crab muscle. J Physiol. 1981 Mar;312:71–80. doi: 10.1113/jphysiol.1981.sp013616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Silver I. A., Erecińska M. Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. J Gen Physiol. 1990 May;95(5):837–866. doi: 10.1085/jgp.95.5.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Szatkowski M. S., Thomas R. C. The intrinsic intracellular H+ buffering power of snail neurones. J Physiol. 1989 Feb;409:89–101. doi: 10.1113/jphysiol.1989.sp017486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Terzic A., Tung R. T., Kurachi Y. Nucleotide regulation of ATP sensitive potassium channels. Cardiovasc Res. 1994 Jun;28(6):746–753. doi: 10.1093/cvr/28.6.746. [DOI] [PubMed] [Google Scholar]
  26. Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
  27. Trapp S., Ballanyi K. KATP channel mediation of anoxia-induced outward current in rat dorsal vagal neurons in vitro. J Physiol. 1995 Aug 15;487(1):37–50. doi: 10.1113/jphysiol.1995.sp020859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Trapp S., Lückermann M., Kaila K., Ballanyi K. Acidosis of hippocampal neurones mediated by a plasmalemmal Ca2+/H+ pump. Neuroreport. 1996 Aug 12;7(12):2000–2004. doi: 10.1097/00001756-199608120-00029. [DOI] [PubMed] [Google Scholar]
  29. Travagli R. A., Gillis R. A., Rossiter C. D., Vicini S. Glutamate and GABA-mediated synaptic currents in neurons of the rat dorsal motor nucleus of the vagus. Am J Physiol. 1991 Mar;260(3 Pt 1):G531–G536. doi: 10.1152/ajpgi.1991.260.3.G531. [DOI] [PubMed] [Google Scholar]
  30. Voipio J., Kaila K. Interstitial PCO2 and pH in rat hippocampal slices measured by means of a novel fast CO2/H(+)-sensitive microelectrode based on a PVC-gelled membrane. Pflugers Arch. 1993 May;423(3-4):193–201. doi: 10.1007/BF00374394. [DOI] [PubMed] [Google Scholar]
  31. Wang G. J., Randall R. D., Thayer S. A. Glutamate-induced intracellular acidification of cultured hippocampal neurons demonstrates altered energy metabolism resulting from Ca2+ loads. J Neurophysiol. 1994 Dec;72(6):2563–2569. doi: 10.1152/jn.1994.72.6.2563. [DOI] [PubMed] [Google Scholar]
  32. Werth J. L., Thayer S. A. Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J Neurosci. 1994 Jan;14(1):348–356. doi: 10.1523/JNEUROSCI.14-01-00348.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wächtler J., Mayer C., Rucker F., Grafe P. Glucose availability alters ischaemia-induced changes in intracellular pH and calcium of isolated rat spinal roots. Brain Res. 1996 Jun 24;725(1):30–36. doi: 10.1016/0006-8993(96)00320-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES