Abstract
1. The aim of this study was to determine whether the low molecular mass GTPase RhoA or related proteins are involved in carbachol- and high-K(+)-induced contractions in intact intestinal smooth muscle as well as the carbachol-induced increase in Ca2+ sensitivity of the myofilaments in permeabilized preparations. 2. The carbachol-induced increase in the Ca2+ sensitivity of force production in beta-escin-permeabilized intestinal smooth muscle was enhanced in preparations that were loaded with the constitutively active mutant of RhoA, Val14RhoA, and was inhibited by exoenzyme C3 from Clostridium botulinum, which ADP-ribosylates and inactivates small GTPases of the Rho family. The effect of C3 on Ca2+ sensitivity in the absence of the agonist was negligible, while the maximal Ca(2+)-activated force was inhibited by about 20%. 3. Inhibition of carbachol-induced force was associated with an increase in ADP-ribosylation of a protein band with a molecular mass of approximately 22 kDa, corresponding to Rho, and was partially reversed in the presence of Ile41RhoA, which is not a substrate for C3. Val14RhoA did not restore carbachol-induced Ca2+ sensitization in C3-treated smooth muscle. 4. In intact intestinal smooth muscle, toxin B from Clostridium difficile, which monoglucosylates members of the Rho family, inhibited high-K(+)-induced contractions and the initial phasic response to carbachol by about 30%. The delayed contractile response to carbachol was completely inhibited. 5. In smooth muscle preparations that were permeabilized with beta-escin after treatment with toxin B, carbachol-and GTP gamma S-induced Ca2+ sensitization was significantly inhibited. 6. These findings are consistent with a role for Rho or Rho-like proteins in agonist-induced increase in Ca2+ sensitivity of force production in intact and permeabilized intestinal smooth muscle.
Full text
PDF![317](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7574/1160879/780a961bdc3f/jphysiol00390-0023.png)
![318](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7574/1160879/812d0294b81d/jphysiol00390-0024.png)
![319](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7574/1160879/43aab150a327/jphysiol00390-0025.png)
![320](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7574/1160879/e3aa958abb43/jphysiol00390-0026.png)
![321](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7574/1160879/969720f9283a/jphysiol00390-0027.png)
![322](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7574/1160879/4278e1497cc7/jphysiol00390-0028.png)
![323](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7574/1160879/a445d321ca27/jphysiol00390-0029.png)
![324](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7574/1160879/37b68bbeab43/jphysiol00390-0030.png)
![325](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7574/1160879/816bad22e8c1/jphysiol00390-0031.png)
![326](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7574/1160879/50258ed55977/jphysiol00390-0032.png)
![327](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7574/1160879/656894c9f027/jphysiol00390-0033.png)
![328](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7574/1160879/f9d15bcd8302/jphysiol00390-0034.png)
![329](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7574/1160879/6744dec50e16/jphysiol00390-0035.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adam L. P., Franklin M. T., Raff G. J., Hathaway D. R. Activation of mitogen-activated protein kinase in porcine carotid arteries. Circ Res. 1995 Feb;76(2):183–190. doi: 10.1161/01.res.76.2.183. [DOI] [PubMed] [Google Scholar]
- Aktories K., Mohr C., Koch G. Clostridium botulinum C3 ADP-ribosyltransferase. Curr Top Microbiol Immunol. 1992;175:115–131. doi: 10.1007/978-3-642-76966-5_6. [DOI] [PubMed] [Google Scholar]
- Aktories K., Rösener S., Blaschke U., Chhatwal G. S. Botulinum ADP-ribosyltransferase C3. Purification of the enzyme and characterization of the ADP-ribosylation reaction in platelet membranes. Eur J Biochem. 1988 Mar 1;172(2):445–450. doi: 10.1111/j.1432-1033.1988.tb13908.x. [DOI] [PubMed] [Google Scholar]
- Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990 Nov 8;348(6297):125–132. doi: 10.1038/348125a0. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chong L. D., Traynor-Kaplan A., Bokoch G. M., Schwartz M. A. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell. 1994 Nov 4;79(3):507–513. doi: 10.1016/0092-8674(94)90259-3. [DOI] [PubMed] [Google Scholar]
- Collins E. M., Walsh M. P., Morgan K. G. Contraction of single vascular smooth muscle cells by phenylephrine at constant [Ca2+]i. Am J Physiol. 1992 Mar;262(3 Pt 2):H754–H762. doi: 10.1152/ajpheart.1992.262.3.H754. [DOI] [PubMed] [Google Scholar]
- Di Salvo J., Pfitzer G., Semenchuk L. A. Protein tyrosine phosphorylation, cellular Ca2+, and Ca2+ sensitivity for contraction of smooth muscle. Can J Physiol Pharmacol. 1994 Nov;72(11):1434–1439. doi: 10.1139/y94-207. [DOI] [PubMed] [Google Scholar]
- Di Salvo J., Steusloff A., Semenchuk L., Satoh S., Kolquist K., Pfitzer G. Tyrosine kinase inhibitors suppress agonist-induced contraction in smooth muscle. Biochem Biophys Res Commun. 1993 Feb 15;190(3):968–974. doi: 10.1006/bbrc.1993.1144. [DOI] [PubMed] [Google Scholar]
- Florin I., Thelestam M. Internalization of Clostridium difficile cytotoxin into cultured human lung fibroblasts. Biochim Biophys Acta. 1983 Dec 19;763(4):383–392. doi: 10.1016/0167-4889(83)90100-3. [DOI] [PubMed] [Google Scholar]
- Fritz G., Aktories K. ADP-ribosylation of Rho proteins by Clostridium botulinum exoenzyme C3 is influenced by phosphorylation of Rho-associated factors. Biochem J. 1994 May 15;300(Pt 1):133–139. doi: 10.1042/bj3000133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujita A., Takeuchi T., Nakajima H., Nishio H., Hata F. Involvement of heterotrimeric GTP-binding protein and rho protein, but not protein kinase C, in agonist-induced Ca2+ sensitization of skinned muscle of guinea pig vas deferens. J Pharmacol Exp Ther. 1995 Jul;274(1):555–561. [PubMed] [Google Scholar]
- Fujiwara T., Itoh T., Kubota Y., Kuriyama H. Effects of guanosine nucleotides on skinned smooth muscle tissue of the rabbit mesenteric artery. J Physiol. 1989 Jan;408:535–547. doi: 10.1113/jphysiol.1989.sp017474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbert R. J., Pothoulakis C., LaMont J. T., Yakubovich M. Clostridium difficile toxin B activates calcium influx required for actin disassembly during cytotoxicity. Am J Physiol. 1995 Mar;268(3 Pt 1):G487–G495. doi: 10.1152/ajpgi.1995.268.3.G487. [DOI] [PubMed] [Google Scholar]
- Gong M. C., Iizuka K., Nixon G., Browne J. P., Hall A., Eccleston J. F., Sugai M., Kobayashi S., Somlyo A. V., Somlyo A. P. Role of guanine nucleotide-binding proteins--ras-family or trimeric proteins or both--in Ca2+ sensitization of smooth muscle. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1340–1345. doi: 10.1073/pnas.93.3.1340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gopalakrishna R., Anderson W. B. Ca2+-induced hydrophobic site on calmodulin: application for purification of calmodulin by phenyl-Sepharose affinity chromatography. Biochem Biophys Res Commun. 1982 Jan 29;104(2):830–836. doi: 10.1016/0006-291x(82)90712-4. [DOI] [PubMed] [Google Scholar]
- Himpens B., Somlyo A. P. Free-calcium and force transients during depolarization and pharmacomechanical coupling in guinea-pig smooth muscle. J Physiol. 1988 Jan;395:507–530. doi: 10.1113/jphysiol.1988.sp016932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirata K., Kikuchi A., Sasaki T., Kuroda S., Kaibuchi K., Matsuura Y., Seki H., Saida K., Takai Y. Involvement of rho p21 in the GTP-enhanced calcium ion sensitivity of smooth muscle contraction. J Biol Chem. 1992 May 5;267(13):8719–8722. [PubMed] [Google Scholar]
- Itagaki M., Komori S., Unno T., Syuto B., Ohashi H. Possible involvement of a small G-protein sensitive to exoenzyme C3 of Clostridium botulinum in the regulation of myofilament Ca2+ sensitivity in beta-escin skinned smooth muscle of guinea pig ileum. Jpn J Pharmacol. 1995 Jan;67(1):1–7. doi: 10.1254/jjp.67.1. [DOI] [PubMed] [Google Scholar]
- Jalink K., van Corven E. J., Hengeveld T., Morii N., Narumiya S., Moolenaar W. H. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J Cell Biol. 1994 Aug;126(3):801–810. doi: 10.1083/jcb.126.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Just I., Fritz G., Aktories K., Giry M., Popoff M. R., Boquet P., Hegenbarth S., von Eichel-Streiber C. Clostridium difficile toxin B acts on the GTP-binding protein Rho. J Biol Chem. 1994 Apr 8;269(14):10706–10712. [PubMed] [Google Scholar]
- Just I., Mohr C., Schallehn G., Menard L., Didsbury J. R., Vandekerckhove J., van Damme J., Aktories K. Purification and characterization of an ADP-ribosyltransferase produced by Clostridium limosum. J Biol Chem. 1992 May 25;267(15):10274–10280. [PubMed] [Google Scholar]
- Just I., Selzer J., Wilm M., von Eichel-Streiber C., Mann M., Aktories K. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature. 1995 Jun 8;375(6531):500–503. doi: 10.1038/375500a0. [DOI] [PubMed] [Google Scholar]
- Khalil R. A., Lajoie C., Resnick M. S., Morgan K. G. Ca(2+)-independent isoforms of protein kinase C differentially translocate in smooth muscle. Am J Physiol. 1992 Sep;263(3 Pt 1):C714–C719. doi: 10.1152/ajpcell.1992.263.3.C714. [DOI] [PubMed] [Google Scholar]
- Kitazawa T., Gaylinn B. D., Denney G. H., Somlyo A. P. G-protein-mediated Ca2+ sensitization of smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem. 1991 Jan 25;266(3):1708–1715. [PubMed] [Google Scholar]
- Kitazawa T., Masuo M., Somlyo A. P. G protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9307–9310. doi: 10.1073/pnas.88.20.9307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kobayashi S., Kitazawa T., Somlyo A. V., Somlyo A. P. Cytosolic heparin inhibits muscarinic and alpha-adrenergic Ca2+ release in smooth muscle. Physiological role of inositol 1,4,5-trisphosphate in pharmacomechanical coupling. J Biol Chem. 1989 Oct 25;264(30):17997–18004. [PubMed] [Google Scholar]
- Kokubu N., Satoh M., Takayanagi I. Involvement of botulinum C3-sensitive GTP-binding proteins in alpha 1-adrenoceptor subtypes mediating Ca(2+)-sensitization. Eur J Pharmacol. 1995 Jun 23;290(1):19–27. doi: 10.1016/0922-4106(95)90012-8. [DOI] [PubMed] [Google Scholar]
- Kubota Y., Nomura M., Kamm K. E., Mumby M. C., Stull J. T. GTP gamma S-dependent regulation of smooth muscle contractile elements. Am J Physiol. 1992 Feb;262(2 Pt 1):C405–C410. doi: 10.1152/ajpcell.1992.262.2.C405. [DOI] [PubMed] [Google Scholar]
- Kumagai N., Morii N., Fujisawa K., Nemoto Y., Narumiya S. ADP-ribosylation of rho p21 inhibits lysophosphatidic acid-induced protein tyrosine phosphorylation and phosphatidylinositol 3-kinase activation in cultured Swiss 3T3 cells. J Biol Chem. 1993 Nov 25;268(33):24535–24538. [PubMed] [Google Scholar]
- Leevers S. J., Marshall C. J. Activation of extracellular signal-regulated kinase, ERK2, by p21ras oncoprotein. EMBO J. 1992 Feb;11(2):569–574. doi: 10.1002/j.1460-2075.1992.tb05088.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noda M., Yasuda-Fukazawa C., Moriishi K., Kato T., Okuda T., Kurokawa K., Takuwa Y. Involvement of rho in GTP gamma S-induced enhancement of phosphorylation of 20 kDa myosin light chain in vascular smooth muscle cells: inhibition of phosphatase activity. FEBS Lett. 1995 Jul 3;367(3):246–250. doi: 10.1016/0014-5793(95)00573-r. [DOI] [PubMed] [Google Scholar]
- Paterson H. F., Self A. J., Garrett M. D., Just I., Aktories K., Hall A. Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol. 1990 Sep;111(3):1001–1007. doi: 10.1083/jcb.111.3.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pavalko F. M., Adam L. P., Wu M. F., Walker T. L., Gunst S. J. Phosphorylation of dense-plaque proteins talin and paxillin during tracheal smooth muscle contraction. Am J Physiol. 1995 Mar;268(3 Pt 1):C563–C571. doi: 10.1152/ajpcell.1995.268.3.C563. [DOI] [PubMed] [Google Scholar]
- Rankin S., Morii N., Narumiya S., Rozengurt E. Botulinum C3 exoenzyme blocks the tyrosine phosphorylation of p125FAK and paxillin induced by bombesin and endothelin. FEBS Lett. 1994 Nov 14;354(3):315–319. doi: 10.1016/0014-5793(94)01148-6. [DOI] [PubMed] [Google Scholar]
- Rembold C. M. Modulation of the [Ca2+] sensitivity of myosin phosphorylation in intact swine arterial smooth muscle. J Physiol. 1990 Oct;429:77–94. doi: 10.1113/jphysiol.1990.sp018245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ridley A. J., Comoglio P. M., Hall A. Regulation of scatter factor/hepatocyte growth factor responses by Ras, Rac, and Rho in MDCK cells. Mol Cell Biol. 1995 Feb;15(2):1110–1122. doi: 10.1128/mcb.15.2.1110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ridley A. J., Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992 Aug 7;70(3):389–399. doi: 10.1016/0092-8674(92)90163-7. [DOI] [PubMed] [Google Scholar]
- Satoh S., Kreutz R., Wilm C., Ganten D., Pfitzer G. Augmented agonist-induced Ca(2+)-sensitization of coronary artery contraction in genetically hypertensive rats. Evidence for altered signal transduction in the coronary smooth muscle cells. J Clin Invest. 1994 Oct;94(4):1397–1403. doi: 10.1172/JCI117475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satoh S., Rensland H., Pfitzer G. Ras proteins increase Ca(2+)-responsiveness of smooth muscle contraction. FEBS Lett. 1993 Jun 14;324(2):211–215. doi: 10.1016/0014-5793(93)81395-g. [DOI] [PubMed] [Google Scholar]
- Somlyo A. P., Somlyo A. V. Signal transduction and regulation in smooth muscle. Nature. 1994 Nov 17;372(6503):231–236. doi: 10.1038/372231a0. [DOI] [PubMed] [Google Scholar]
- Steusloff A., Paul E., Semenchuk L. A., Di Salvo J., Pfitzer G. Modulation of Ca2+ sensitivity in smooth muscle by genistein and protein tyrosine phosphorylation. Arch Biochem Biophys. 1995 Jul 10;320(2):236–242. doi: 10.1016/0003-9861(95)90005-5. [DOI] [PubMed] [Google Scholar]
- Sugai M., Hashimoto K., Kikuchi A., Inoue S., Okumura H., Matsumoto K., Goto Y., Ohgai H., Moriishi K., Syuto B. Epidermal cell differentiation inhibitor ADP-ribosylates small GTP-binding proteins and induces hyperplasia of epidermis. J Biol Chem. 1992 Feb 5;267(4):2600–2604. [PubMed] [Google Scholar]
- Takaishi K., Sasaki T., Kato M., Yamochi W., Kuroda S., Nakamura T., Takeichi M., Takai Y. Involvement of Rho p21 small GTP-binding protein and its regulator in the HGF-induced cell motility. Oncogene. 1994 Jan;9(1):273–279. [PubMed] [Google Scholar]
- Vojtek A. B., Cooper J. A. Rho family members: activators of MAP kinase cascades. Cell. 1995 Aug 25;82(4):527–529. doi: 10.1016/0092-8674(95)90023-3. [DOI] [PubMed] [Google Scholar]
- von Eichel-Streiber C., Harperath U., Bosse D., Hadding U. Purification of two high molecular weight toxins of Clostridium difficile which are antigenically related. Microb Pathog. 1987 May;2(5):307–318. doi: 10.1016/0882-4010(87)90073-8. [DOI] [PubMed] [Google Scholar]