Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1996 Oct 15;496(Pt 2):395–405. doi: 10.1113/jphysiol.1996.sp021693

Temporal specificity of muscarinic synaptic modulation of the Ca(2+)-dependent K+ current (ISAHP) in rat hippocampal neurones.

L Zhang 1, D Han 1, P L Carlen 1
PMCID: PMC1160885  PMID: 8910224

Abstract

1. We examined synaptic modulation of the Ca(2+)-dependent K+ current (ISAHP), which underlies the slow after-hyperpolarization (sAHP) in hippocampal CA1 neurones of rat brain slices. ISAHP was evoked in whole-cell voltage-clamp mode by depolarizing pulses, and synaptic afferents to CA1 neurones were stimulated electrically with a paired-pulse protocol. 2. Afferent stimulation delivered 200-1500 ms prior to be depolarizing pulse produced a profound reduction of ISAHP by 58%, but not other Ca(2+)-dependent outward currents that preceded ISAHP. Perfusion of slices with atropine significantly attenuated the synaptic reduction of ISAHP, indicating an event mediated largely by muscarinic receptor activation. When delivered < 400 ms after the depolarizing pulse, similar synaptic stimuli produced no substantial reduction in ISAHP, even in neurons where the duration of ISAHP was prolonged to 8-10 s either by lowering the recording temperature or by intracellular application of a calcium chelator. 3. To examine the effect of cholinergic stimulation of the depolarization-activated Ca2+ influx, high-threshold voltage-activated Ca2+ currents were recorded in the conventional or perforated whole-cell mode. Perfusion of slices with 5-10 microM carbachol for 5-10 min caused no substantial decrease in these Ca2+ currents, suggesting that the synaptic reduction of ISAHP is unlikely to be due to a blockade of depolarization-induced Ca2+ influx which triggers the generation of ISAHP. 4. The present data demonstrate that afferent stimulation reduces ISAHP only if it occurs prior to the depolarization-induced Ca2+ influx. We propose that modulation of inactive sAHP channels by muscarinic stimulation may decrease their sensitivity to the influx of Ca2+, whereas sAHP channels activated by Ca2+ may compete with the receptor-coupled modulation thus rendering the sAHP channels unresponsive to cholinergic afferent stimulation.

Full text

PDF
395

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdul-Ghani M. A., Valiante T. A., Carlen P. L., Pennefather P. S. Tyrosine kinase inhibitors enhance a Ca(2+)-activated K+ current (IAHP) and reduce IAHP suppression by a metabotropic glutamate receptor agonist in rat dentate granule neurones. J Physiol. 1996 Oct 1;496(Pt 1):139–144. doi: 10.1113/jphysiol.1996.sp021671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alger B. E., Sim J. A., Brown D. A. Single-channel activity correlated with medium-duration, Ca-dependent K current in cultured rat hippocampal neurones. Neurosci Lett. 1994 Feb 28;168(1-2):23–28. doi: 10.1016/0304-3940(94)90407-3. [DOI] [PubMed] [Google Scholar]
  3. Andreasen M., Lambert J. D. The excitability of CA1 pyramidal cell dendrites is modulated by a local Ca(2+)-dependent K(+)-conductance. Brain Res. 1995 Nov 6;698(1-2):193–203. doi: 10.1016/0006-8993(95)00910-i. [DOI] [PubMed] [Google Scholar]
  4. Baskys A., Bernstein N. K., Barolet A. W., Carlen P. L. NMDA and quisqualate reduce a Ca-dependent K+ current by a protein kinase-mediated mechanism. Neurosci Lett. 1990 Apr 20;112(1):76–81. doi: 10.1016/0304-3940(90)90325-4. [DOI] [PubMed] [Google Scholar]
  5. Benardo L. S., Prince D. A. Ionic mechanisms of cholinergic excitation in mammalian hippocampal pyramidal cells. Brain Res. 1982 Oct 14;249(2):333–344. doi: 10.1016/0006-8993(82)90067-1. [DOI] [PubMed] [Google Scholar]
  6. Bley K. R., Tsien R. W. Inhibition of Ca2+ and K+ channels in sympathetic neurons by neuropeptides and other ganglionic transmitters. Neuron. 1990 Mar;4(3):379–391. doi: 10.1016/0896-6273(90)90050-p. [DOI] [PubMed] [Google Scholar]
  7. Brown D. A., Griffith W. H. Calcium-activated outward current in voltage-clamped hippocampal neurones of the guinea-pig. J Physiol. 1983 Apr;337:287–301. doi: 10.1113/jphysiol.1983.sp014624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Charpak S., Gähwiler B. H., Do K. Q., Knöpfel T. Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature. 1990 Oct 25;347(6295):765–767. doi: 10.1038/347765a0. [DOI] [PubMed] [Google Scholar]
  9. Cole A. E., Nicoll R. A. Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells. Science. 1983 Sep 23;221(4617):1299–1301. doi: 10.1126/science.6612345. [DOI] [PubMed] [Google Scholar]
  10. Cole A. E., Nicoll R. A. Characterization of a slow cholinergic post-synaptic potential recorded in vitro from rat hippocampal pyramidal cells. J Physiol. 1984 Jul;352:173–188. doi: 10.1113/jphysiol.1984.sp015285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Constanti A., Sim J. A. Calcium-dependent potassium conductance in guinea-pig olfactory cortex neurones in vitro. J Physiol. 1987 Jun;387:173–194. doi: 10.1113/jphysiol.1987.sp016569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dodd J., Dingledine R., Kelly J. S. The excitatory action of acetylcholine on hippocampal neurones of the guinea pig and rat maintained in vitro. Brain Res. 1981 Feb 23;207(1):109–127. doi: 10.1016/0006-8993(81)90682-x. [DOI] [PubMed] [Google Scholar]
  13. Horn R., Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol. 1988 Aug;92(2):145–159. doi: 10.1085/jgp.92.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Knöpfel T., Vranesic I., Gähwiler B. H., Brown D. A. Muscarinic and beta-adrenergic depression of the slow Ca2(+)-activated potassium conductance in hippocampal CA3 pyramidal cells is not mediated by a reduction of depolarization-induced cytosolic Ca2+ transients. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4083–4087. doi: 10.1073/pnas.87.11.4083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Krnjević K. Central cholinergic mechanisms and function. Prog Brain Res. 1993;98:285–292. doi: 10.1016/s0079-6123(08)62410-3. [DOI] [PubMed] [Google Scholar]
  16. Köhr G., Mody I. Endogenous intracellular calcium buffering and the activation/inactivation of HVA calcium currents in rat dentate gyrus granule cells. J Gen Physiol. 1991 Nov;98(5):941–967. doi: 10.1085/jgp.98.5.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lancaster B., Adams P. R. Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J Neurophysiol. 1986 Jun;55(6):1268–1282. doi: 10.1152/jn.1986.55.6.1268. [DOI] [PubMed] [Google Scholar]
  18. Lancaster B., Nicoll R. A., Perkel D. J. Calcium activates two types of potassium channels in rat hippocampal neurons in culture. J Neurosci. 1991 Jan;11(1):23–30. doi: 10.1523/JNEUROSCI.11-01-00023.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lancaster B., Nicoll R. A. Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J Physiol. 1987 Aug;389:187–203. doi: 10.1113/jphysiol.1987.sp016653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Levey A. I., Edmunds S. M., Koliatsos V., Wiley R. G., Heilman C. J. Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci. 1995 May;15(5 Pt 2):4077–4092. doi: 10.1523/JNEUROSCI.15-05-04077.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Levitan I. B. Modulation of ion channels by protein phosphorylation and dephosphorylation. Annu Rev Physiol. 1994;56:193–212. doi: 10.1146/annurev.ph.56.030194.001205. [DOI] [PubMed] [Google Scholar]
  22. Lewis P. R., Shute C. C. The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest. Brain. 1967 Sep;90(3):521–540. doi: 10.1093/brain/90.3.521. [DOI] [PubMed] [Google Scholar]
  23. Madison D. V., Lancaster B., Nicoll R. A. Voltage clamp analysis of cholinergic action in the hippocampus. J Neurosci. 1987 Mar;7(3):733–741. doi: 10.1523/JNEUROSCI.07-03-00733.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Madison D. V., Nicoll R. A. Cyclic adenosine 3',5'-monophosphate mediates beta-receptor actions of noradrenaline in rat hippocampal pyramidal cells. J Physiol. 1986 Mar;372:245–259. doi: 10.1113/jphysiol.1986.sp016007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Müller W., Connor J. A. Cholinergic input uncouples Ca2+ changes from K+ conductance activation and amplifies intradendritic Ca2+ changes in hippocampal neurons. Neuron. 1991 Jun;6(6):901–905. doi: 10.1016/0896-6273(91)90230-w. [DOI] [PubMed] [Google Scholar]
  26. Müller W., Petrozzino J. J., Griffith L. C., Danho W., Connor J. A. Specific involvement of Ca(2+)-calmodulin kinase II in cholinergic modulation of neuronal responsiveness. J Neurophysiol. 1992 Dec;68(6):2264–2269. doi: 10.1152/jn.1992.68.6.2264. [DOI] [PubMed] [Google Scholar]
  27. Pedarzani P., Storm J. F. PKA mediates the effects of monoamine transmitters on the K+ current underlying the slow spike frequency adaptation in hippocampal neurons. Neuron. 1993 Dec;11(6):1023–1035. doi: 10.1016/0896-6273(93)90216-e. [DOI] [PubMed] [Google Scholar]
  28. Rae J., Cooper K., Gates P., Watsky M. Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods. 1991 Mar;37(1):15–26. doi: 10.1016/0165-0270(91)90017-t. [DOI] [PubMed] [Google Scholar]
  29. Sah P., Isaacson J. S. Channels underlying the slow afterhyperpolarization in hippocampal pyramidal neurons: neurotransmitters modulate the open probability. Neuron. 1995 Aug;15(2):435–441. doi: 10.1016/0896-6273(95)90047-0. [DOI] [PubMed] [Google Scholar]
  30. Sah P., McLachlan E. M. Ca(2+)-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: a role for Ca(2+)-activated Ca2+ release. Neuron. 1991 Aug;7(2):257–264. doi: 10.1016/0896-6273(91)90264-z. [DOI] [PubMed] [Google Scholar]
  31. Schwindt P. C., Spain W. J., Crill W. E. Effects of intracellular calcium chelation on voltage-dependent and calcium-dependent currents in cat neocortical neurons. Neuroscience. 1992;47(3):571–578. doi: 10.1016/0306-4522(92)90166-y. [DOI] [PubMed] [Google Scholar]
  32. Storm J. F. Potassium currents in hippocampal pyramidal cells. Prog Brain Res. 1990;83:161–187. doi: 10.1016/s0079-6123(08)61248-0. [DOI] [PubMed] [Google Scholar]
  33. Watkins J., Collingridge G. Phenylglycine derivatives as antagonists of metabotropic glutamate receptors. Trends Pharmacol Sci. 1994 Sep;15(9):333–342. doi: 10.1016/0165-6147(94)90028-0. [DOI] [PubMed] [Google Scholar]
  34. Zhang L., Pennefather P., Velumian A., Tymianski M., Charlton M., Carlen P. L. Potentiation of a slow Ca(2+)-dependent K+ current by intracellular Ca2+ chelators in hippocampal CA1 neurons of rat brain slices. J Neurophysiol. 1995 Dec;74(6):2225–2241. doi: 10.1152/jn.1995.74.6.2225. [DOI] [PubMed] [Google Scholar]
  35. Zhang L., Valiante T. A., Carlen P. L. Contribution of the low-threshold T-type calcium current in generating the post-spike depolarizing afterpotential in dentate granule neurons of immature rats. J Neurophysiol. 1993 Jul;70(1):223–231. doi: 10.1152/jn.1993.70.1.223. [DOI] [PubMed] [Google Scholar]
  36. Zhang L., Weiner J. L., Carlen P. L. Muscarinic potentiation of IK in hippocampal neurons: electrophysiological characterization of the signal transduction pathway. J Neurosci. 1992 Nov;12(11):4510–4520. doi: 10.1523/JNEUROSCI.12-11-04510.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhang L., Weiner J. L., Valiante T. A., Velumian A. A., Watson P. L., Jahromi S. S., Schertzer S., Pennefather P., Carlen P. L. Whole-cell recording of the Ca(2+)-dependent slow afterhyperpolarization in hippocampal neurones: effects of internally applied anions. Pflugers Arch. 1994 Feb;426(3-4):247–253. doi: 10.1007/BF00374778. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES