Abstract
1. Since direct measurement of muscle blood flow in humans has been difficult, estimations of muscle flow have been made from measured total limb blood flow using a classic equation that predicts that the fraction of resting blood flow through muscle tissue decreases as total limb flow increases. 2. We used positron emission tomography and 15O-labelled water to directly quantify resting muscle and total limb blood flow in cross-sections of the femoral region in twenty-eight normal subjects (age, 30 +/- 8 years; body mass index, 24.1 +/- 3.3 Kg m-2) under conditions of constant environmental temperature of 22-23 degrees C. 3. Muscle blood flow averaged 3.1 +/- 1.7 ml (100 ml muscle)-1 min-1 (range, 1.1-7.5 ml (100 ml muscle)-1 min-1 and cross-sectional limb blood flow averaged 2.5 +/- 1.1 ml (100 ml limb)-1 min-1) (range, 1.0-4.8 ml (100 ml limb)-1 min-1). A linear relationship was observed between limb and muscle blood flow, and a regression equation was calculated for estimation of muscle blood flow bases on limb flow: muscle flow = (1.41 +/- 0.10) limb flow - (0.43 +/- 0.28). The slope of this equation was significantly greater than 1 (P < 0.001) indicating that the fraction of blood flow perfusing muscle tissue increases as a function of total limb flow. 4. These data provide a new equation for estimation of resting muscle blood flow in normal subjects, and demonstrate that muscle blood flow is the primary determinant of resting blood flow in man.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen P., Henriksson J. Capillary supply of the quadriceps femoris muscle of man: adaptive response to exercise. J Physiol. 1977 Sep;270(3):677–690. doi: 10.1113/jphysiol.1977.sp011975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonadonna R. C., Saccomani M. P., Seely L., Zych K. S., Ferrannini E., Cobelli C., DeFronzo R. A. Glucose transport in human skeletal muscle. The in vivo response to insulin. Diabetes. 1993 Jan;42(1):191–198. doi: 10.2337/diab.42.1.191. [DOI] [PubMed] [Google Scholar]
- COOPER K. E., EDHOLM O. G., MOTTRAM R. F. The blood flow in skin and muscle of the human forearm. J Physiol. 1955 May 27;128(2):258–267. doi: 10.1113/jphysiol.1955.sp005304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Celermajer D. S., Sorensen K. E., Gooch V. M., Spiegelhalter D. J., Miller O. I., Sullivan I. D., Lloyd J. K., Deanfield J. E. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992 Nov 7;340(8828):1111–1115. doi: 10.1016/0140-6736(92)93147-f. [DOI] [PubMed] [Google Scholar]
- Cobelli C., Saccomani M. P., Ferrannini E., Defronzo R. A., Gelfand R., Bonadonna R. A compartmental model to quantitate in vivo glucose transport in the human forearm. Am J Physiol. 1989 Dec;257(6 Pt 1):E943–E958. doi: 10.1152/ajpendo.1989.257.6.E943. [DOI] [PubMed] [Google Scholar]
- DeFronzo R. A., Gunnarsson R., Björkman O., Olsson M., Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985 Jul;76(1):149–155. doi: 10.1172/JCI111938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dela F., Larsen J. J., Mikines K. J., Galbo H. Normal effect of insulin to stimulate leg blood flow in NIDDM. Diabetes. 1995 Feb;44(2):221–226. doi: 10.2337/diab.44.2.221. [DOI] [PubMed] [Google Scholar]
- Ebeling P., Bourey R., Koranyi L., Tuominen J. A., Groop L. C., Henriksson J., Mueckler M., Sovijärvi A., Koivisto V. A. Mechanism of enhanced insulin sensitivity in athletes. Increased blood flow, muscle glucose transport protein (GLUT-4) concentration, and glycogen synthase activity. J Clin Invest. 1993 Oct;92(4):1623–1631. doi: 10.1172/JCI116747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elia M., Kurpad A. What is the blood flow to resting human muscle? Clin Sci (Lond) 1993 May;84(5):559–563. doi: 10.1042/cs0840559. [DOI] [PubMed] [Google Scholar]
- Iida H., Kanno I., Miura S., Murakami M., Takahashi K., Uemura K. Error analysis of a quantitative cerebral blood flow measurement using H2(15)O autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab. 1986 Oct;6(5):536–545. doi: 10.1038/jcbfm.1986.99. [DOI] [PubMed] [Google Scholar]
- Jackson R. A., Peters N., Advani U., Perry G., Rogers J., Brough W. H., Pilkington T. R. Forearm glucose uptake during the oral glucose tolerance test in normal subjects. Diabetes. 1973 Jun;22(6):442–458. doi: 10.2337/diab.22.6.442. [DOI] [PubMed] [Google Scholar]
- Johnson M. A., Polgar J., Weightman D., Appleton D. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci. 1973 Jan;18(1):111–129. doi: 10.1016/0022-510x(73)90023-3. [DOI] [PubMed] [Google Scholar]
- Kelley D., Mitrakou A., Marsh H., Schwenk F., Benn J., Sonnenberg G., Arcangeli M., Aoki T., Sorensen J., Berger M. Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load. J Clin Invest. 1988 May;81(5):1563–1571. doi: 10.1172/JCI113489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LASSEN N. A., LINDBJERG J., MUNCK O. MEASUREMENT OF BLOOD-FLOW THROUGH SKELETAL MUSCLE BY INTRAMUSCULAR INJECTION OF XENON-133. Lancet. 1964 Mar 28;1(7335):686–689. doi: 10.1016/s0140-6736(64)91518-1. [DOI] [PubMed] [Google Scholar]
- Laakso M., Edelman S. V., Brechtel G., Baron A. D. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Invest. 1990 Jun;85(6):1844–1852. doi: 10.1172/JCI114644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maughan R. J., Watson J. S., Weir J. The relative proportions of fat, muscle and bone in the normal human forearm as determined by computed tomography. Clin Sci (Lond) 1984 Jun;66(6):683–689. doi: 10.1042/cs0660683. [DOI] [PubMed] [Google Scholar]
- Nuutila P., Raitakari M., Laine H., Kirvelä O., Takala T., Utriainen T., Mäkimattila S., Pitkänen O. P., Ruotsalainen U., Iida H. Role of blood flow in regulating insulin-stimulated glucose uptake in humans. Studies using bradykinin, [15O]water, and [18F]fluoro-deoxy-glucose and positron emission tomography. J Clin Invest. 1996 Apr 1;97(7):1741–1747. doi: 10.1172/JCI118601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RABINOWITZ D., ZIERLER K. L. Forearm metabolism in obesity and its response to intra-arterial insulin. Characterization of insulin resistance and evidence for adaptive hyperinsulinism. J Clin Invest. 1962 Dec;41:2173–2181. doi: 10.1172/JCI104676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith T., Tong C., Lammertsma A. A., Butler K. R., Schnorr L., Watson J. D., Ramsay S., Clark J. C., Jones T. Dosimetry of intravenously administered oxygen-15 labelled water in man: a model based on experimental human data from 21 subjects. Eur J Nucl Med. 1994 Oct;21(10):1126–1134. doi: 10.1007/BF00181069. [DOI] [PubMed] [Google Scholar]
- Utriainen T., Holmäng A., Björntorp P., Mäkimattila S., Sovijärvi A., Lindholm H., Yki-Järvinen H. Physical fitness, muscle morphology, and insulin-stimulated limb blood flow in normal subjects. Am J Physiol. 1996 May;270(5 Pt 1):E905–E911. doi: 10.1152/ajpendo.1996.270.5.E905. [DOI] [PubMed] [Google Scholar]
- Utriainen T., Malmström R., Mäkimattila S., Yki-Järvinen H. Methodological aspects, dose-response characteristics and causes of interindividual variation in insulin stimulation of limb blood flow in normal subjects. Diabetologia. 1995 May;38(5):555–564. doi: 10.1007/BF00400724. [DOI] [PubMed] [Google Scholar]
- Yki-Järvinen H., Young A. A., Lamkin C., Foley J. E. Kinetics of glucose disposal in whole body and across the forearm in man. J Clin Invest. 1987 Jun;79(6):1713–1719. doi: 10.1172/JCI113011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zurlo F., Larson K., Bogardus C., Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest. 1990 Nov;86(5):1423–1427. doi: 10.1172/JCI114857. [DOI] [PMC free article] [PubMed] [Google Scholar]