Abstract
1. To examine the role of the phosphoinositide cascade triggered by disturbed Ca2+ homeostasis in ischaemic neurones, inositol 1,3,4,5-tetrakisphosphate (InsP4) was applied to the cytoplasmic face of membrane patches isolated from CA1 pyramidal neurones in the gerbil hippocampus. 2. In outside-out recordings, InsP4 induced an inward current which was increased by raising the extracellular [Ca2+]. In contrast, no clear channel openings could be observed in patches from neurones of sham-operated gerbils. 3. Open probabilities of InsP4-activated channels were significantly decreased upon application of omega-conotoxin but were not affected by omega-agatoxin or nifedipine. 4. In inside-out patches using high concentrations of Ca2+, Ba2+ or Sr2+ in the pipette solution, InsP4 enhanced inward currents. 5. Application of the isomers of InsP4 slightly enhanced the currents, but inositol 1,4,5-trisphosphate (InsP3) had no effect. 6. In the absence of InsP4 there was a single main Ba2+ current peak of 4.0 pA in amplitude, whereas upon its application two main peaks of 3.0 and 7.2 pA were present. 7. The open probabilities of these channels were apparently increased by InsP4. 8. These findings support the view that a disturbed phosphoinositide cascade occurs in the hippocampal pyramidal neurones after ischaemia and the InsP4 thus formed plays an important role in promoting the Ca2+ accumulation which results in neuronal death.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benveniste H., Jørgensen M. B., Diemer N. H., Hansen A. J. Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia. Acta Neurol Scand. 1988 Dec;78(6):529–536. doi: 10.1111/j.1600-0404.1988.tb03697.x. [DOI] [PubMed] [Google Scholar]
- Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
- Bird G. S., Rossier M. F., Hughes A. R., Shears S. B., Armstrong D. L., Putney J. W., Jr Activation of Ca2+ entry into acinar cells by a non-phosphorylatable inositol trisphosphate. Nature. 1991 Jul 11;352(6331):162–165. doi: 10.1038/352162a0. [DOI] [PubMed] [Google Scholar]
- Bouchelouche P., Belhage B., Frandsen A., Drejer J., Schousboe A. Glutamate receptor activation in cultured cerebellar granule cells increases cytosolic free Ca2+ by mobilization of cellular Ca2+ and activation of Ca2+ influx. Exp Brain Res. 1989;76(2):281–291. doi: 10.1007/BF00247888. [DOI] [PubMed] [Google Scholar]
- Challiss R. A., Willcocks A. L., Mulloy B., Potter B. V., Nahorski S. R. Characterization of inositol 1,4,5-trisphosphate- and inositol 1,3,4,5-tetrakisphosphate-binding sites in rat cerebellum. Biochem J. 1991 Mar 15;274(Pt 3):861–867. doi: 10.1042/bj2740861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi D. W. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 1988 Oct;11(10):465–469. doi: 10.1016/0166-2236(88)90200-7. [DOI] [PubMed] [Google Scholar]
- Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
- Cullen P. J., Hsuan J. J., Truong O., Letcher A. J., Jackson T. R., Dawson A. P., Irvine R. F. Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP1 family. Nature. 1995 Aug 10;376(6540):527–530. doi: 10.1038/376527a0. [DOI] [PubMed] [Google Scholar]
- De Waard M., Seagar M., Feltz A., Couraud F. Inositol phosphate regulation of voltage-dependent calcium channels in cerebellar granule neurons. Neuron. 1992 Sep;9(3):497–503. doi: 10.1016/0896-6273(92)90187-i. [DOI] [PubMed] [Google Scholar]
- Deshpande J. K., Siesjö B. K., Wieloch T. Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia. J Cereb Blood Flow Metab. 1987 Feb;7(1):89–95. doi: 10.1038/jcbfm.1987.13. [DOI] [PubMed] [Google Scholar]
- Fukuda M., Aruga J., Niinobe M., Aimoto S., Mikoshiba K. Inositol-1,3,4,5-tetrakisphosphate binding to C2B domain of IP4BP/synaptotagmin II. J Biol Chem. 1994 Nov 18;269(46):29206–29211. [PubMed] [Google Scholar]
- Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
- Irvine R. F. Is inositol tetrakisphosphate the second messenger that controls Ca2+ entry into cells? Adv Second Messenger Phosphoprotein Res. 1992;26:161–185. [PubMed] [Google Scholar]
- Irvine R. F., Letcher A. J., Heslop J. P., Berridge M. J. The inositol tris/tetrakisphosphate pathway--demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissues. Nature. 1986 Apr 17;320(6063):631–634. doi: 10.1038/320631a0. [DOI] [PubMed] [Google Scholar]
- Irvine R. F., Moor R. M. Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J. 1986 Dec 15;240(3):917–920. doi: 10.1042/bj2400917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 1982 May 6;239(1):57–69. doi: 10.1016/0006-8993(82)90833-2. [DOI] [PubMed] [Google Scholar]
- Kirino T., Robinson H. P., Miwa A., Tamura A., Kawai N. Disturbance of membrane function preceding ischemic delayed neuronal death in the gerbil hippocampus. J Cereb Blood Flow Metab. 1992 May;12(3):408–417. doi: 10.1038/jcbfm.1992.58. [DOI] [PubMed] [Google Scholar]
- Lee S. Y., Sim S. S., Kim J. W., Moon K. H., Kim J. H., Rhee S. G. Purification and properties of D-myo-inositol 1,4,5-trisphosphate 3-kinase from rat brain. Susceptibility to calpain. J Biol Chem. 1990 Jun 5;265(16):9434–9440. [PubMed] [Google Scholar]
- Lückhoff A., Clapham D. E. Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca(2+)-permeable channel. Nature. 1992 Jan 23;355(6358):356–358. doi: 10.1038/355356a0. [DOI] [PubMed] [Google Scholar]
- Mills L. R., Niesen C. E., So A. P., Carlen P. L., Spigelman I., Jones O. T. N-type Ca2+ channels are located on somata, dendrites, and a subpopulation of dendritic spines on live hippocampal pyramidal neurons. J Neurosci. 1994 Nov;14(11 Pt 2):6815–6824. doi: 10.1523/JNEUROSCI.14-11-06815.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neher E. Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol. 1992;207:123–131. doi: 10.1016/0076-6879(92)07008-c. [DOI] [PubMed] [Google Scholar]
- Ozyurt E., Graham D. I., Woodruff G. N., McCulloch J. Protective effect of the glutamate antagonist, MK-801 in focal cerebral ischemia in the cat. J Cereb Blood Flow Metab. 1988 Feb;8(1):138–143. doi: 10.1038/jcbfm.1988.18. [DOI] [PubMed] [Google Scholar]
- Pulsinelli W. A., Brierley J. B., Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol. 1982 May;11(5):491–498. doi: 10.1002/ana.410110509. [DOI] [PubMed] [Google Scholar]
- Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
- Reiser G., Schäfer R., Donié F., Hülser E., Nehls-Sahabandu M., Mayr G. W. A high-affinity inositol 1,3,4,5-tetrakisphosphate receptor protein from brain is specifically labelled by a newly synthesized photoaffinity analogue, N-(4-azidosalicyl)aminoethanol(1)-1-phospho-D-myo-inositol 3,4,5-trisphosphate. Biochem J. 1991 Dec 1;280(Pt 2):533–539. doi: 10.1042/bj2800533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt-Kastner R., Freund T. F. Selective vulnerability of the hippocampus in brain ischemia. Neuroscience. 1991;40(3):599–636. doi: 10.1016/0306-4522(91)90001-5. [DOI] [PubMed] [Google Scholar]
- Shimazaki K., Ishida A., Rhee S. G., Takenawa T., Kawai N. Changes in IP3 3-kinase immunoreactivity following transient ischaemia in gerbil hippocampus. Neuroreport. 1994 Mar 21;5(7):785–788. doi: 10.1097/00001756-199403000-00012. [DOI] [PubMed] [Google Scholar]
- Siesjö B. K., Bengtsson F. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab. 1989 Apr;9(2):127–140. doi: 10.1038/jcbfm.1989.20. [DOI] [PubMed] [Google Scholar]
- Smith P. M. Ins(1,3,4,5)P4 promotes sustained activation of the Ca(2+(-dependent Cl- current in isolated mouse lacrimal cells. Biochem J. 1992 Apr 1;283(Pt 1):27–30. doi: 10.1042/bj2830027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theibert A. B., Estevez V. A., Ferris C. D., Danoff S. K., Barrow R. K., Prestwich G. D., Snyder S. H. Inositol 1,3,4,5-tetrakisphosphate and inositol hexakisphosphate receptor proteins: isolation and characterization from rat brain. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3165–3169. doi: 10.1073/pnas.88.8.3165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theibert A. B., Estevez V. A., Mourey R. J., Marecek J. F., Barrow R. K., Prestwich G. D., Snyder S. H. Photoaffinity labeling and characterization of isolated inositol 1,3,4,5-tetrakisphosphate- and inositol hexakisphosphate-binding proteins. J Biol Chem. 1992 May 5;267(13):9071–9079. [PubMed] [Google Scholar]
- Tsubokawa H., Oguro K., Masuzawa T., Kawai N. Ca(2+)-dependent non-NMDA receptor-mediated synaptic currents in ischemic CA1 hippocampal neurons. J Neurophysiol. 1994 Mar;71(3):1190–1196. doi: 10.1152/jn.1994.71.3.1190. [DOI] [PubMed] [Google Scholar]
- Tsubokawa H., Oguro K., Masuzawa T., Nakaima T., Kawai N. Effects of a spider toxin and its analogue on glutamate-activated currents in the hippocampal CA1 neuron after ischemia. J Neurophysiol. 1995 Jul;74(1):218–225. doi: 10.1152/jn.1995.74.1.218. [DOI] [PubMed] [Google Scholar]
- Tsubokawa H., Oguro K., Robinson H. P., Masuzawa T., Kawai N. Single glutamate channels in CA1 pyramidal neurones after transient ischaemia. Neuroreport. 1995 Feb 15;6(3):527–523. doi: 10.1097/00001756-199502000-00030. [DOI] [PubMed] [Google Scholar]
- Tsubokawa H., Oguro K., Robinson H. P., Masuzawa T., Kirino T., Kawai N. Abnormal Ca2+ homeostasis before cell death revealed by whole cell recording of ischemic CA1 hippocampal neurons. Neuroscience. 1992 Aug;49(4):807–817. doi: 10.1016/0306-4522(92)90358-9. [DOI] [PubMed] [Google Scholar]
- Tsubokawa H., Oguro K., Robinson H. P., Masuzawa T., Rhee T. S., Takenawa T., Kawai N. Inositol 1,3,4,5-tetrakisphosphate as a mediator of neuronal death in ischemic hippocampus. Neuroscience. 1994 Mar;59(2):291–297. doi: 10.1016/0306-4522(94)90597-5. [DOI] [PubMed] [Google Scholar]
- Tymianski M., Wallace M. C., Spigelman I., Uno M., Carlen P. L., Tator C. H., Charlton M. P. Cell-permeant Ca2+ chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. Neuron. 1993 Aug;11(2):221–235. doi: 10.1016/0896-6273(93)90180-y. [DOI] [PubMed] [Google Scholar]
- Zola-Morgan S., Squire L. R., Amaral D. G. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci. 1986 Oct;6(10):2950–2967. doi: 10.1523/JNEUROSCI.06-10-02950.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]