Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1996 Nov 15;497(Pt 1):271–277. doi: 10.1113/jphysiol.1996.sp021766

The role of nitric oxide synthesis in cardiovascular responses to acute hypoxia in the late gestation sheep fetus.

L R Green 1, L Bennet 1, M A Hanson 1
PMCID: PMC1160929  PMID: 8951728

Abstract

1. In fetal sheep (123-129 days gestation) we investigated the effect of acute isocapnic hypoxia (Pa,O2, 12 +/- 0.6 mmHg) on the fetal heart rate (FHR), mean systemic arterial blood pressure (MAP), carotid blood flow (CBF), femoral blood flow (FBF), carotid vascular resistance (CVR) and femoral vascular resistance (FVR) with the infusion of either the nitric oxide synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) or saline vehicle. 2. During normoxia, CBF was lower (P < 0.05) and MAP, FVR and CVR were higher with L-NAME than with vehicle infusion (P < 0.01, P < 0.05 and P < 0.01, respectively). FHR fell 15 min after the onset of L-NAME infusion (P < 0.05). During hypoxia in both groups, FHR showed an initial rapid fall (P < 0.05) and subsequent return to prehypoxic levels, and there was a fall in FBF (P < 0.01). MAP increased during hypoxia with vehicle (P < 0.05) but not L-NAME infusion: thus MAP was similar during hypoxia in the two groups. The rebound tachycardia seen during recovery in the vehicle group (P < 0.01) was not evident in the L-NAME group. The rise in CBF and fall in CVR during hypoxia with vehicle (P < 0.01 and P < 0.05, respectively) was absent with L-NAME infusion. FVR rose during hypoxia in both groups (P < 0.05). 3. Thus NOS inhibition alters basal systemic vascular tone in the late gestation fetus. The rise in CBF and fall in CVR during hypoxia is absent with NOS inhibition.

Full text

PDF
271

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bogaert G. A., Kogan B. A., Mevorach R. A. Effects of endothelium-derived nitric oxide on renal hemodynamics and function in the sheep fetus. Pediatr Res. 1993 Dec;34(6):755–761. doi: 10.1203/00006450-199312000-00011. [DOI] [PubMed] [Google Scholar]
  2. Cunha R. S., Cabral A. M., Vasquez E. C. Evidence that the autonomic nervous system plays a major role in the L-NAME-induced hypertension in conscious rats. Am J Hypertens. 1993 Sep;6(9):806–809. doi: 10.1093/ajh/6.9.806. [DOI] [PubMed] [Google Scholar]
  3. Diket A. L., Pierce M. R., Munshi U. K., Voelker C. A., Eloby-Childress S., Greenberg S. S., Zhang X. J., Clark D. A., Miller M. J. Nitric oxide inhibition causes intrauterine growth retardation and hind-limb disruptions in rats. Am J Obstet Gynecol. 1994 Nov;171(5):1243–1250. doi: 10.1016/0002-9378(94)90141-4. [DOI] [PubMed] [Google Scholar]
  4. Fernández N., García J. L., García-Villalón A. L., Monge L., Gómez B., Diéguez G. Cerebral blood flow and cerebrovascular reactivity after inhibition of nitric oxide synthesis in conscious goats. Br J Pharmacol. 1993 Sep;110(1):428–434. doi: 10.1111/j.1476-5381.1993.tb13828.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fineman J. R., Wong J., Morin F. C., 3rd, Wild L. M., Soifer S. J. Chronic nitric oxide inhibition in utero produces persistent pulmonary hypertension in newborn lambs. J Clin Invest. 1994 Jun;93(6):2675–2683. doi: 10.1172/JCI117281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Finney D. J. Repeated measurements: what is measured and what repeats? Stat Med. 1990 Jun;9(6):639–644. doi: 10.1002/sim.4780090610. [DOI] [PubMed] [Google Scholar]
  7. Gardiner S. M., Compton A. M., Bennett T., Palmer R. M., Moncada S. Control of regional blood flow by endothelium-derived nitric oxide. Hypertension. 1990 May;15(5):486–492. doi: 10.1161/01.hyp.15.5.486. [DOI] [PubMed] [Google Scholar]
  8. Gardiner S. M., Kemp P. A., Bennett T. Effects of NG-nitro-L-arginine methyl ester on vasodilator responses to adrenaline or BRL 38227 in conscious rats. Br J Pharmacol. 1991 Nov;104(3):731–737. doi: 10.1111/j.1476-5381.1991.tb12496.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Iadecola C., Pelligrino D. A., Moskowitz M. A., Lassen N. A. Nitric oxide synthase inhibition and cerebrovascular regulation. J Cereb Blood Flow Metab. 1994 Mar;14(2):175–192. doi: 10.1038/jcbfm.1994.25. [DOI] [PubMed] [Google Scholar]
  10. Iwamoto J., Yoshinaga M., Yang S. P., Krasney E., Krasney J. Methylene blue inhibits hypoxic cerebral vasodilation in awake sheep. J Appl Physiol (1985) 1992 Dec;73(6):2226–2232. doi: 10.1152/jappl.1992.73.6.2226. [DOI] [PubMed] [Google Scholar]
  11. Jones C. T., Robinson R. O. Plasma catecholamines in foetal and adult sheep. J Physiol. 1975 Jun;248(1):15–33. doi: 10.1113/jphysiol.1975.sp010960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. King C. E., Curtis S. E., Winn M. J., Mewburn J. D., Cain S. M., Chapler C. K. The role of endothelium-derived relaxing factor (EDRF) in the whole body and hindlimb vascular responses during hypoxic hypoxia. Adv Exp Med Biol. 1994;361:285–293. doi: 10.1007/978-1-4615-1875-4_47. [DOI] [PubMed] [Google Scholar]
  13. Matthews J. N., Altman D. G., Campbell M. J., Royston P. Analysis of serial measurements in medical research. BMJ. 1990 Jan 27;300(6719):230–235. doi: 10.1136/bmj.300.6719.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
  15. Pearce W. J., Longo L. D. Developmental aspects of endothelial function. Semin Perinatol. 1991 Feb;15(1):40–48. [PubMed] [Google Scholar]
  16. Roberts J. D., Jr, Chen T. Y., Kawai N., Wain J., Dupuy P., Shimouchi A., Bloch K., Polaner D., Zapol W. M. Inhaled nitric oxide reverses pulmonary vasoconstriction in the hypoxic and acidotic newborn lamb. Circ Res. 1993 Feb;72(2):246–254. doi: 10.1161/01.res.72.2.246. [DOI] [PubMed] [Google Scholar]
  17. Scrogin K. E., Veelken R., Luft F. C. Sympathetic baroreceptor responses after chronic NG-nitro-L-arginine methyl ester treatment in conscious rats. Hypertension. 1994 Jun;23(6 Pt 2):982–986. doi: 10.1161/01.hyp.23.6.982. [DOI] [PubMed] [Google Scholar]
  18. Vallet B., Curtis S. E., Winn M. J., King C. E., Chapler C. K., Cain S. M. Hypoxic vasodilation does not require nitric oxide (EDRF/NO) synthesis. J Appl Physiol (1985) 1994 Mar;76(3):1256–1261. doi: 10.1152/jappl.1994.76.3.1256. [DOI] [PubMed] [Google Scholar]
  19. Vane J. R., Anggård E. E., Botting R. M. Regulatory functions of the vascular endothelium. N Engl J Med. 1990 Jul 5;323(1):27–36. doi: 10.1056/NEJM199007053230106. [DOI] [PubMed] [Google Scholar]
  20. van Bel F., Roman C., Klautz R. J., Teitel D. F., Rudolph A. M. Relationship between brain blood flow and carotid arterial flow in the sheep fetus. Pediatr Res. 1994 Mar;35(3):329–333. doi: 10.1203/00006450-199403000-00011. [DOI] [PubMed] [Google Scholar]
  21. van Bel F., Sola A., Roman C., Rudolph A. M. Role of nitric oxide in the regulation of the cerebral circulation in the lamb fetus during normoxemia and hypoxemia. Biol Neonate. 1995;68(3):200–210. doi: 10.1159/000244238. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES