Abstract
1. Intracellular and focal extracellular recording techniques were used to study neurotransmitter release mechanisms in postganglionic sympathetic nerve terminals in the guinea-pig isolated vas deferens. 2. High concentrations of the selective N-type calcium channel blocker omega-conotoxin GVIA abolished the release of the neurotransmitter ATP evoked by trains of low-frequency stimuli. However, in the presence of high concentrations of the blocker, a 'residual release' persisted at higher frequencies. 3. Residual release was dependent on calcium entry through a pharmacologically distinct voltage-dependent calcium channel. 4. Residual release was inhibited by ryanodine in a use- and time-dependent manner and this inhibitory effect was potentiated by caffeine. The inhibitory effect of ryanodine on residual release was reversed by 4-aminopyridine. 5. These findings indicate that calcium-induced calcium released from intraneuronal stores plays an important role in action potential-evoked neurotransmitter release mechanisms in postganglionic sympathetic nerve terminals.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brock J. A., Cunnane T. C. Electrical activity at the sympathetic neuroeffector junction in the guinea-pig vas deferens. J Physiol. 1988 May;399:607–632. doi: 10.1113/jphysiol.1988.sp017099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brock J. A., Cunnane T. C., Evans R. J., Ziogas J. Inhibition of transmitter release from sympathetic nerve endings by omega-conotoxin. Clin Exp Pharmacol Physiol. 1989 Apr;16(4):333–339. doi: 10.1111/j.1440-1681.1989.tb01568.x. [DOI] [PubMed] [Google Scholar]
- Brock J. A., Cunnane T. C. Relationship between the nerve action potential and transmitter release from sympathetic postganglionic nerve terminals. Nature. 1987 Apr 9;326(6113):605–607. doi: 10.1038/326605a0. [DOI] [PubMed] [Google Scholar]
- Cunnane T. C., Stjärne L. Transmitter secretion from individual varicosities of guinea-pig and mouse vas deferens: highly intermittent and monoquantal. Neuroscience. 1984 Sep;13(1):1–20. doi: 10.1016/0306-4522(84)90255-0. [DOI] [PubMed] [Google Scholar]
- Edwards F. A., Gibb A. J., Colquhoun D. ATP receptor-mediated synaptic currents in the central nervous system. Nature. 1992 Sep 10;359(6391):144–147. doi: 10.1038/359144a0. [DOI] [PubMed] [Google Scholar]
- Ferry C. B. The innervation of the vas deferens of the guinea-pig. J Physiol. 1967 Sep;192(2):463–478. doi: 10.1113/jphysiol.1967.sp008309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furuichi T., Furutama D., Hakamata Y., Nakai J., Takeshima H., Mikoshiba K. Multiple types of ryanodine receptor/Ca2+ release channels are differentially expressed in rabbit brain. J Neurosci. 1994 Aug;14(8):4794–4805. doi: 10.1523/JNEUROSCI.14-08-04794.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuwajima G., Futatsugi A., Niinobe M., Nakanishi S., Mikoshiba K. Two types of ryanodine receptors in mouse brain: skeletal muscle type exclusively in Purkinje cells and cardiac muscle type in various neurons. Neuron. 1992 Dec;9(6):1133–1142. doi: 10.1016/0896-6273(92)90071-k. [DOI] [PubMed] [Google Scholar]
- Lai F. A., Dent M., Wickenden C., Xu L., Kumari G., Misra M., Lee H. B., Sar M., Meissner G. Expression of a cardiac Ca(2+)-release channel isoform in mammalian brain. Biochem J. 1992 Dec 1;288(Pt 2):553–564. doi: 10.1042/bj2880553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lampe R. A., Defeo P. A., Davison M. D., Young J., Herman J. L., Spreen R. C., Horn M. B., Mangano T. J., Keith R. A. Isolation and pharmacological characterization of omega-grammotoxin SIA, a novel peptide inhibitor of neuronal voltage-sensitive calcium channel responses. Mol Pharmacol. 1993 Aug;44(2):451–460. [PubMed] [Google Scholar]
- Lavidis N. A., Bennett M. R. Probabilistic secretion of quanta from visualized sympathetic nerve varicosities in mouse vas deferens. J Physiol. 1992 Aug;454:9–26. doi: 10.1113/jphysiol.1992.sp019252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagasaki K., Fleischer S. Ryanodine sensitivity of the calcium release channel of sarcoplasmic reticulum. Cell Calcium. 1988 Feb;9(1):1–7. doi: 10.1016/0143-4160(88)90032-2. [DOI] [PubMed] [Google Scholar]
- Ouyang Y., Deerinck T. J., Walton P. D., Airey J. A., Sutko J. L., Ellisman M. H. Distribution of ryanodine receptors in the chicken central nervous system. Brain Res. 1993 Aug 27;620(2):269–280. doi: 10.1016/0006-8993(93)90165-j. [DOI] [PubMed] [Google Scholar]
- Piser T. M., Lampe R. A., Keith R. A., Thayer S. A. omega-Grammotoxin blocks action-potential-induced Ca2+ influx and whole-cell Ca2+ current in rat dorsal-root ganglion neurons. Pflugers Arch. 1994 Feb;426(3-4):214–220. doi: 10.1007/BF00374774. [DOI] [PubMed] [Google Scholar]
- Sharp A. H., McPherson P. S., Dawson T. M., Aoki C., Campbell K. P., Snyder S. H. Differential immunohistochemical localization of inositol 1,4,5-trisphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain. J Neurosci. 1993 Jul;13(7):3051–3063. doi: 10.1523/JNEUROSCI.13-07-03051.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith A. B., Cunnane T. C. Omega-conotoxin GVIA-resistant neurotransmitter release in postganglionic sympathetic nerve terminals. Neuroscience. 1996 Feb;70(3):817–824. doi: 10.1016/s0306-4522(96)83018-1. [DOI] [PubMed] [Google Scholar]
- Verkhratsky A., Shmigol A. Calcium-induced calcium release in neurones. Cell Calcium. 1996 Jan;19(1):1–14. doi: 10.1016/s0143-4160(96)90009-3. [DOI] [PubMed] [Google Scholar]