Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 May 15;180(2):257–263. doi: 10.1042/bj1800257

Induction of liver cell haem oxygenase in iron-overloaded rats.

N G Ibrahim, S T Hoffstein, M L Freedman
PMCID: PMC1161048  PMID: 486109

Abstract

Rats were chronically iron-overloaded by intraperitonel injections of iron-dextran. Electron microscopy revealed that the excess iron was deposited in ferritin-like particles packed in lysosomes and scattered in hepatic cytoplasm. No mitochondrial iron deposition or damage was seen. Furthermore, mitochondrial preparations from chronically iron-overloaded animals were found to be contaminated with lysosomes, which could explain previously reported increases in mitochondrial iron by chemical analysis. Mitochondrial function, as measured by cytochromes a-a3, b and c concentrations as well as activity of the rate-limiting enzyme of haem synthesis, delta-aminolaevulinate synthetase, was not diminished by chronic iron-overloading. Microsomal haem was decreased by 30% at the time that haem oxygenase, the rate-limiting enzyme of haem degradation, was increased approx. 3-fold. Animals were given a single intraperitoneal injection of iron-dextran and the activities of delta-aminolaevulinate synthetase and haem oxygenase were measured over 24 h. delta-Aminolaevulinate synthetase activity increased approx. 2-fold in these acutely iron-overloaded rat livers, but at a time after the increase in haem oxygenase. These results suggest that an early consequence of excess iron in liver is acceleration of the rate of haem degradation, possible by haem oxygenase.

Full text

PDF
257

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beattie D. S., Stuchell R. N. Studies on the induction of hepatic delta-aminolevulinic acid synthetase in rat liver mitochondria. Arch Biochem Biophys. 1970 Aug;139(2):291–297. doi: 10.1016/0003-9861(70)90480-7. [DOI] [PubMed] [Google Scholar]
  2. Bissell D. M., Hammaker L. E. Cytochrome P-450 heme and the regulation of hepatic heme oxygenase activity. Arch Biochem Biophys. 1976 Sep;176(1):91–102. doi: 10.1016/0003-9861(76)90144-2. [DOI] [PubMed] [Google Scholar]
  3. Bissell D. M., Hammaker L. E. Cytochrome p-450 heme and the regulation of delta-aminolevulinic acid synthetase in the liver. Arch Biochem Biophys. 1976 Sep;176(1):103–112. doi: 10.1016/0003-9861(76)90145-4. [DOI] [PubMed] [Google Scholar]
  4. Davies M. The heterogeneity of lysosomes. Front Biol. 1975;43(4):305–348. [PubMed] [Google Scholar]
  5. De Matteis F., Sparks R. G. Iron-dependent loss of liver cytochrome P-450 haem in vivo and in vitro. FEBS Lett. 1973 Jan 15;29(2):141–144. doi: 10.1016/0014-5793(73)80545-9. [DOI] [PubMed] [Google Scholar]
  6. HUNTER F. E., Jr, GEBICKI J. M., HOFFSTEN P. E., WEINSTEIN J., SCOTT A. Swelling and lysis of rat liver mitochondria induced by ferrous ions. J Biol Chem. 1963 Feb;238:828–835. [PubMed] [Google Scholar]
  7. Hanstein W. G., Sacks P. V., Muller-Eberhard U. Properties of liver mitochondria from iron-loaded rats. Biochem Biophys Res Commun. 1975 Dec 1;67(3):1175–1184. doi: 10.1016/0006-291x(75)90797-4. [DOI] [PubMed] [Google Scholar]
  8. Hochstein P., Nordenbrand K., Ernster L. Evidence for the involvement of iron in the ADP-activated peroxidation of lipids in microsomes and mitochondria. Biochem Biophys Res Commun. 1964;14:323–328. doi: 10.1016/s0006-291x(64)80004-8. [DOI] [PubMed] [Google Scholar]
  9. Horn L. R., Machlin L. J., Barker M. O., Brin M. Drug metabolism and hepatic heme proteins in the vitamin E-deficient rat. Arch Biochem Biophys. 1976 Jan;172(1):270–277. doi: 10.1016/0003-9861(76)90076-x. [DOI] [PubMed] [Google Scholar]
  10. Ibrahim N. G., Gruenspecht N. R., Freedman M. L. Hemin feedback inhibition at reticulocyte delta-aminolevulinic acid synthetase and delta-aminolevulinic acid dehydratase. Biochem Biophys Res Commun. 1978 Feb 28;80(4):722–728. doi: 10.1016/0006-291x(78)91304-9. [DOI] [PubMed] [Google Scholar]
  11. Kappas A., Maines M. D. Tin: a potent inducer of heme oxygenase in kidney. Science. 1976 Apr 2;192(4234):60–62. doi: 10.1126/science.1257757. [DOI] [PubMed] [Google Scholar]
  12. LABBE R. F., NISHIDA G. A new method of hemin isolation. Biochim Biophys Acta. 1957 Nov;26(2):437–437. doi: 10.1016/0006-3002(57)90033-1. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Levin W., Lu A. Y., Jacobson M., Kuntzman R., Poyer J. L., McCay P. B. Lipid peroxidation and the degradation of cytochrome P-450 heme. Arch Biochem Biophys. 1973 Oct;158(2):842–852. doi: 10.1016/0003-9861(73)90580-8. [DOI] [PubMed] [Google Scholar]
  15. Maines M. D., Ibrahim N. G., Kappas A. Solubilization and partial purification of heme oxygenase from rat liver. J Biol Chem. 1977 Aug 25;252(16):5900–5903. [PubMed] [Google Scholar]
  16. Maines M. D., Janousek V., Tomio J. M., Kappas A. Cobalt inhibition of synthesis and induction of delta-aminolevulinate synthase in liver. Proc Natl Acad Sci U S A. 1976 May;73(5):1499–1503. doi: 10.1073/pnas.73.5.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maines M. D., Kappas A. Cobalt stimulation of heme degradation in the liver. Dissociation of microsomal oxidation of heme from cytochrome P-450. J Biol Chem. 1975 Jun 10;250(11):4171–4177. [PubMed] [Google Scholar]
  18. Maines M. D., Kappas A. Metals as regulators of heme metabolism. Science. 1977 Dec 23;198(4323):1215–1221. doi: 10.1126/science.337492. [DOI] [PubMed] [Google Scholar]
  19. Maines M. D., Kappas A. Prematurely evoked synthesis and induction of delta-aminolevulinate synthetase in neonatal liver. Evidence for metal ion repression of enzyme formation. J Biol Chem. 1978 Apr 10;253(7):2321–2326. [PubMed] [Google Scholar]
  20. Maines M. D., Kappas A. Studies on the mechanism of induction of haem oxygenase by cobalt and other metal ions. Biochem J. 1976 Jan 15;154(1):125–131. doi: 10.1042/bj1540125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marver H. S., Collins A., Tschudy D. P., Rechcigl M., Jr Delta-aminolevulinic acid synthetase. II. Induction in rat liver. J Biol Chem. 1966 Oct 10;241(19):4323–4329. [PubMed] [Google Scholar]
  22. Paine A. J., Legg R. F. Apparent lack of correlation between the loss of cytochrome P-450 in hepatic parenchymal cell culture and the stimulation of haem oxygenase activity. Biochem Biophys Res Commun. 1978 Mar 30;81(2):672–679. doi: 10.1016/0006-291x(78)91589-9. [DOI] [PubMed] [Google Scholar]
  23. Peters T. J., Seymour C. A. Acid hydrolase activities and lysosomal integrity in liver biopsies from patients with iron overload. Clin Sci Mol Med. 1976 Jan;50(1):75–78. doi: 10.1042/cs0500075. [DOI] [PubMed] [Google Scholar]
  24. Pimstone N. R., Engel P., Tenhunen R., Seitz P. T., Marver H. S., Schmid R. Inducible heme oxygenase in the kidney: a model for the homeostatic control of hemoglobin catabolism. J Clin Invest. 1971 Oct;50(10):2042–2050. doi: 10.1172/JCI106697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sassa S., Kappas A. Induction of aminolevulinate synthase and porphyrins in cultured liver cells maintained in chemically defined medium. Permissive effects of hormones on induction process. J Biol Chem. 1977 Apr 10;252(7):2428–2436. [PubMed] [Google Scholar]
  26. Schacter B. A., Meyer U. A., Marver H. S. Hemoprotein catabolism during stimulation of microsomal lipid peroxidation. Biochim Biophys Acta. 1972 Aug 18;279(1):221–227. doi: 10.1016/0304-4165(72)90259-0. [DOI] [PubMed] [Google Scholar]
  27. Schacter B. A., Yoda B., Israels L. G. Cyclic oscillations in rat hepatic heme oxygenase and delta-aminolevulinic acid synthetase following intravenous heme administration. Arch Biochem Biophys. 1976 Mar;173(1):11–17. doi: 10.1016/0003-9861(76)90228-9. [DOI] [PubMed] [Google Scholar]
  28. Shanley B. C., Zail S. S., Joubert S. M. Porphyrin metabolism in experimental hepatic siderosis in the rat. Br J Haematol. 1970 Jan;18(1):79–87. doi: 10.1111/j.1365-2141.1970.tb01420.x. [DOI] [PubMed] [Google Scholar]
  29. Spieler P. J., Ibrahim N. G., Freedman M. L. Heat inhibition of reticulocyte protein synthesis. Evidence for a mechanism independent of the hemin-controlled repressor. Biochim Biophys Acta. 1978 Apr 27;518(2):366–379. doi: 10.1016/0005-2787(78)90193-4. [DOI] [PubMed] [Google Scholar]
  30. Stein J., Berk P., Tschudy D. A model for calculating enzyme synthetic rates during induction: application to the synergistic effect of ferric citrate on the induction of hepatic delta-aminolevulinic acid synthetase. Life Sci. 1969 Oct 15;8(20):1023–1031. doi: 10.1016/0024-3205(69)90453-6. [DOI] [PubMed] [Google Scholar]
  31. Tenhunen R., Marver H. S., Schmid R. The enzymatic catabolism of hemoglobin: stimulation of microsomal heme oxygenase by hemin. J Lab Clin Med. 1970 Mar;75(3):410–421. [PubMed] [Google Scholar]
  32. Waxman A. D., Collins A., Tschudy D. P. Oscillations of hepatic delta-aminolevulinic acid synthetase produced in vivo by heme. Biochem Biophys Res Commun. 1966 Sep 8;24(5):675–683. doi: 10.1016/0006-291x(66)90377-9. [DOI] [PubMed] [Google Scholar]
  33. Wills E. D. Lipid peroxide formation in microsomes. The role of non-haem iron. Biochem J. 1969 Jun;113(2):325–332. doi: 10.1042/bj1130325. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES