Abstract
Membrane vesicles ('ghosts') formed from bovine chromaffin granules accumulate adrenaline in response to a diffusion potential produced by adding K+ in the presence of valinomycin. This uptake occurs as a short (2--5 min) burst because of the transient nature of the diffusion potential. The potential-driven uptake is optimal at pH approximately 7.2, is inhibited by reserpine, and has an initial rate comparable with that of ATP-driven uptake. These results show that ATP-dependent adrenaline uptake may occur at least partly in response to the membrane potential generated by an electrogenic proton-translocating adenosine triphosphatase found in chromaffin-granule membranes.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bakker E. P., van Dam K. The influence of diffusion potentials across liposomal membranes on the fluorescence intensity of 1-anilinonaphthalene-8-sulphonate. Biochim Biophys Acta. 1974 Mar 15;339(2):157–163. doi: 10.1016/0005-2736(74)90314-9. [DOI] [PubMed] [Google Scholar]
- Bashford C. L., Casey R. P., Radda G. K., Ritchie G. A. Energy-coupling in adrenal chromaffin granules. Neuroscience. 1976;1(5):399–412. doi: 10.1016/0306-4522(76)90133-0. [DOI] [PubMed] [Google Scholar]
- Bashford C. L., Casey R. P., Radda G. K., Ritchie G. A. The effect of uncouplers on catecholamine incorporation by vesicles of chromaffin granules. Biochem J. 1975 Apr;148(1):153–155. doi: 10.1042/bj1480153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bashford C. L., Radda G. K., Ritchie G. A. Energy-linked activities of the chromaffin granule membrane. FEBS Lett. 1975 Jan 15;50(1):21–24. doi: 10.1016/0014-5793(75)81031-3. [DOI] [PubMed] [Google Scholar]
- Buckland R. M., Radda G. K., Shennan C. D. Accessibility of phospholipids in the chromaffin granule membrane. Biochim Biophys Acta. 1978 Nov 16;513(3):321–337. doi: 10.1016/0005-2736(78)90202-x. [DOI] [PubMed] [Google Scholar]
- Casey R. P., Njus D., Radda G. K., Sehr P. A. Active proton uptake by chromaffin granules: observation by amine distribution and phosphorus-31 nuclear magnetic resonance techniques. Biochemistry. 1977 Mar 8;16(5):972–977. doi: 10.1021/bi00624a025. [DOI] [PubMed] [Google Scholar]
- Casey R. P., Njus D., Radda G. K., Sehr P. A. Adenosine triphosphate-evoked catecholamine release in chromatin granules. Osmotic lysis as a consequence of proton translocation. Biochem J. 1976 Sep 15;158(3):583–588. doi: 10.1042/bj1580583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dolais-Kitabgi J., Perlman R. L. The stimulation of cathecholamine release from chromaffin granules by valinomycin. Mol Pharmacol. 1975 Nov;11(6):745–750. [PubMed] [Google Scholar]
- Henderson P. J., McGivan J. D., Chappell J. B. The action of certain antibiotics on mitochondrial, erythrocyte and artificial phospholipid membranes. The role of induced proton permeability. Biochem J. 1969 Feb;111(4):521–535. doi: 10.1042/bj1110521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirata H., Altendorf K., Harold F. M. Energy coupling in membrane vesicles of Escherichia coli. I. Accumulation of metabolites in response to an electrical potential. J Biol Chem. 1974 May 10;249(9):2939–2945. [PubMed] [Google Scholar]
- Holz R. W. Evidence that catecholamine transport into chromaffin vesicles is coupled to vesicle membrane potential. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5190–5194. doi: 10.1073/pnas.75.10.5190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jasaitis A. A., Kuliene V. V., Skulachev V. P. Anilinonaphthalenesulfonate fluorescence changes induced by non-emzymatic generation of membrane potential in mitochondria and submitochondrial particles. Biochim Biophys Acta. 1971 Apr 6;234(1):177–181. doi: 10.1016/0005-2728(71)90144-7. [DOI] [PubMed] [Google Scholar]
- Johnson R. G., Carlson N. J., Scarpa A. deltapH and catecholamine distribution in isolated chromaffin granules. J Biol Chem. 1978 Mar 10;253(5):1512–1521. [PubMed] [Google Scholar]
- Johnson R. G., Scarpa A. Internal pH of isolated chromaffin vesicles. J Biol Chem. 1976 Apr 10;251(7):2189–2191. [PubMed] [Google Scholar]
- Johnson R. G., Scarpa A. Ion permeability of isolated chromaffin granules. J Gen Physiol. 1976 Dec;68(6):601–631. doi: 10.1085/jgp.68.6.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIRSHNER N. Uptake of catecholamines by a particulate fraction of the adrenal medulla. J Biol Chem. 1962 Jul;237:2311–2317. [PubMed] [Google Scholar]
- Murer H., Hopfer U. Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush border membranes. Proc Natl Acad Sci U S A. 1974 Feb;71(2):484–488. doi: 10.1073/pnas.71.2.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nichols J. W., Deamer D. W. Catecholamine uptake and concentration by liposomes maintaining p/ gradients. Biochim Biophys Acta. 1976 Nov 11;455(1):269–271. doi: 10.1016/0005-2736(76)90169-3. [DOI] [PubMed] [Google Scholar]
- Njus D., Radda G. K. Bioenergetic processes in chromaffin granules a new perspective on some old problems. Biochim Biophys Acta. 1978 Mar 10;463(3-4):219–244. doi: 10.1016/0304-4173(78)90001-0. [DOI] [PubMed] [Google Scholar]
- Njus D., Sehr P. A., Radda G. K., Ritchie G. A., Seeley P. J. Phosphorus-31 nuclear magnetic resonance studies of active proton translocation in chromaffin granules. Biochemistry. 1978 Oct 3;17(20):4337–4343. doi: 10.1021/bi00613a035. [DOI] [PubMed] [Google Scholar]
- Phillips J. H., Allison V. P. Proton translocation of the bovine chromaffin-granule membrane. Biochem J. 1978 Mar 15;170(3):661–672. doi: 10.1042/bj1700661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips J. H. Hydroxytryptamine transport by the bovine chromaffin-granule membrane. Biochem J. 1978 Mar 15;170(3):673–679. doi: 10.1042/bj1700673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips J. H. Steady-state kinetics of catecholamine transport by chromaffin-granule "ghosts". Biochem J. 1974 Nov;144(2):319–325. doi: 10.1042/bj1440319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips J. H. Transport of catecholamines by resealed chromaffin-grnaule "ghosts". Biochem J. 1974 Nov;144(2):311–318. doi: 10.1042/bj1440311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard H. B., Zinder O., Hoffman P. G., Nikodejevic O. Regulation of the transmembrane potential of isolated chromaffin granules by ATP, ATP analogs, and external pH. J Biol Chem. 1976 Aug 10;251(15):4544–4550. [PubMed] [Google Scholar]
- Schuldiner S., Fishkes H., Kanner B. I. Role of a transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3713–3716. doi: 10.1073/pnas.75.8.3713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taugner G. The membrane of catecholamine storage vesicles of adrenal medulla. Uptake and release of noradrenaline in relation to the pH and the concentration and steric configuration of the amine present in the medium. Naunyn Schmiedebergs Arch Pharmacol. 1972;274(3):299–314. doi: 10.1007/BF00501939. [DOI] [PubMed] [Google Scholar]