Abstract
In kidney-cortex slices from rats fed on 2.0 mg of ochratoxin A/kg per day for 2 days, gluconeogenesis from pyruvate is decreased by 26%, and renal phosphoenolpyruvate carboxykinase activity is lowered by about 55%. Gluconeogenesis from 10 mM-lactate or 20 mM-malate or -glutamine is also significantly decreased. Hepatic phosphoenolpyruvate carboxykinase is unchanged or increased, and hexokinase activity in kidney and liver remains unaffected. We conclude that ochratoxin A in vivo is an inhibitor of renal phosphoenolpyruvate carboxykinase activity, which is responsible, at least in part, for the block in renal gluconeogenesis.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chang F. C., Chu F. S. The fate of ochratoxin A in rats. Food Cosmet Toxicol. 1977 Jun;15(3):199–204. doi: 10.1016/s0015-6264(77)80390-8. [DOI] [PubMed] [Google Scholar]
- Chu F. S. Interaction of ochratoxin A with bovine serum albumin. Arch Biochem Biophys. 1971 Dec;147(2):359–366. doi: 10.1016/0003-9861(71)90391-2. [DOI] [PubMed] [Google Scholar]
- Goodman A. D., Fuisz R. E., Cahill G. F., Jr Renal gluconeogenesis in acidosis, alkalosis, and potassium deficiency: its possible role in regulation of renal ammonia production. J Clin Invest. 1966 Apr;45(4):612–619. doi: 10.1172/JCI105375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guder W. G., Schmidt U. The localization of gluconeogenesis in rat nephron. Determination of phosphoenolpyruvate carboxykinase in microdissected tubules. Hoppe Seylers Z Physiol Chem. 1974 Mar;355(3):273–278. doi: 10.1515/bchm2.1974.355.1.273. [DOI] [PubMed] [Google Scholar]
- Henning H. V., Stumpf B., Ohly B., Seubert W. On the mechanism of gluconeogenesis and its regulation. 3. The glucogenic capacity and the activities of pyruvate carboxylase and PEP-carboxylase of rat kidney and rat liver after cortisol treatment and starvation. Biochem Z. 1966 Apr 27;344(3):274–288. [PubMed] [Google Scholar]
- KREBS H. A., BENNETT D. A., DE GASQUET P., GASQUET P., GASCOYNE T., YOSHIDA T. Renal gluconeogenesis. The effect of diet on the gluconeogenic capacity of rat-kidney-cortex slices. Biochem J. 1963 Jan;86:22–27. doi: 10.1042/bj0860022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kida K., Nakajo S., Kamiya F., Toyama Y., Nishio T., Nakagawa H. Renal net glucose release in vivo and its contribution to blood glucose in rats. J Clin Invest. 1978 Oct;62(4):721–726. doi: 10.1172/JCI109182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krogh P., Elling F., Hald B., Jylling B., Petersen V. E., Skadhauge E., Svendsen C. K. Experimental avian nephropathy. Changes of renal function and structure induced by ochratoxin A-contaminated feed. Acta Pathol Microbiol Scand A. 1976 Mar;84(2):215–221. [PubMed] [Google Scholar]
- Meisner H., Chan S. Ochratoxin A, an inhibitor of mitochondrial transport systems. Biochemistry. 1974 Jul 2;13(14):2795–2800. doi: 10.1021/bi00711a002. [DOI] [PubMed] [Google Scholar]
- Meisner H. Energy-dependent uptake of ochratoxin A by mitochondria. Arch Biochem Biophys. 1976 Mar;173(1):132–140. doi: 10.1016/0003-9861(76)90243-5. [DOI] [PubMed] [Google Scholar]
- Owen O. E., Felig P., Morgan A. P., Wahren J., Cahill G. F., Jr Liver and kidney metabolism during prolonged starvation. J Clin Invest. 1969 Mar;48(3):574–583. doi: 10.1172/JCI106016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose I. A., Warms J. V. Mitochondrial hexokinase. Release, rebinding, and location. J Biol Chem. 1967 Apr 10;242(7):1635–1645. [PubMed] [Google Scholar]
- Schmidt U., Guder W. G. Sites of enzyme activity along the nephron. Kidney Int. 1976 Mar;9(3):233–242. doi: 10.1038/ki.1976.26. [DOI] [PubMed] [Google Scholar]
- Schmidt U., Marosvari I., Dubach U. C. Renal metabolism of glucose: anatomical sites of hexokinase activity in the rat nephron. FEBS Lett. 1975 Apr 15;53(1):26–28. doi: 10.1016/0014-5793(75)80673-9. [DOI] [PubMed] [Google Scholar]
- Suzuki S., Satoh T., Yamazaki M. Effect of ochratoxin A on carbohydrate metabolism in rat liver. Toxicol Appl Pharmacol. 1975 Apr;32(1):116–122. doi: 10.1016/0041-008x(75)90201-x. [DOI] [PubMed] [Google Scholar]
- UTTER M. F., KEECH D. B. PYRUVATE CARBOXYLASE. I. NATURE OF THE REACTION. J Biol Chem. 1963 Aug;238:2603–2608. [PubMed] [Google Scholar]
- Veneziale C. M., Walter P., Kneer N., Lardy H. A. Influence of L-tryptophan and its metabolites on gluconeogenesis in the isolated, perfused liver. Biochemistry. 1967 Jul;6(7):2129–2138. doi: 10.1021/bi00859a034. [DOI] [PubMed] [Google Scholar]
- Williamson J. R., Anderson J., Browning E. T. Inhibition of gluconeogenesis by butylmalonate in perfused rat liver. J Biol Chem. 1970 Apr 10;245(7):1717–1726. [PubMed] [Google Scholar]
